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NOMENCLATURE

Index

Upper case English characters except “I” and digit numbers indicate surfaces.

Lower case English characters indicate coordinate systems.

c tool surface (¢ = G, P)

w work surface (W = 1, 2)

F,Q tool surfaces or work surfaces
G gear tool surface

P pinion tool surface

1 pinion surface

2 gear surface

1 first principal

o second principal

Matrix

[A] 3 by 4 symmetric augmented matrix which relates principal curvatures and

directions for mating surfaces

(B] 4 by 1 matrix representing homogenous coordinates of point B

[Las) 3 by 3 matrix describing the transformation of vector from the S}, coordinate
system to S, coordinate system

(M) 4 by 4 matrix describing the transformation of cocrdinates from the S, coordinate
system to S, coordinate system

[N] 3 by 1 matrix representing components ¢ normal vector N




Vector
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e

3 by 1 matrix representing components of unit normal vector 7

3 by 1 matrix representing components of angular velocity vector &

position vector of point B on a surface

3B /8u

0B /ov

unit vectors along the principal directions of the surface at the contact point
base vectors along axes X, Y, and Z, respectively

normal vector of point B on a surface

unit normal vector of point B on a surface

07/ 0u

an/ov

slide velocity of surfaces ¢ and Tw

transfer velocity

velocity vectors of contact point in its motion over the pinion and gear surfaces,
respectively

angular velocity

relative angular velocity of surface F with respect to surface @

tangent vector

English Upper Case

mean pitch cone distance

vi




A, AL A, coefficient of a quadratic equation

A, B auxiliary parameters

B point on a surface

cr class of a function

E F G auxiliary parameters for first fundamental form

E,, machining offset

E3 three-dimensional space

F zero function

I first fundamental form

I second fundamental form

I Interval

L generating planar curve for a sphere

L, M, N auxiliary parameters for second fundamental form

L, vector sum of machine center to back and sliding base

M middle point on the gear surface

N number of teeth

P plane

R radius of a circle

R, R, z and z coordinates, respectively, of the center of a circle in the S, coordinate
systermn

S coordinate system

T the smaller absolute value of A and B

Vc(;vc) the projection of V'™ on the Eo,

VC‘:C) the projection of V" on the é'C”

w point width

(1) (1)

. (1) ~ ~ . .
SR AN the projections of vector .V ' on vectors €, and € respectively

*
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XMmcB

Xsp

English Lower

machine center to back

sliding base

Case

cll ? Cl2 ? clJ

dG

dl’ d2! dJ

fl’ f2

tx’ tza t4
u

ull H ulia uzx

constant (Chapter 1)

semimajor axis of the contact ellipse (Chapter 3 and Appendix A)
element of matrix [4] (i =1,2,37=1,2,3)

constant (Chapter 1)

semiminor axis of the contact ellipse (Chapter 3 and Appendix A)
auxiliary variables

clearance

auxiliary variables

average diameter of gear cutter

auxiliary variables

auxiliary variables

gear ratio

derivative of gear ratio with respective to ¢,

cradle angle

tip radius of the cutter

radial setting

semimajor axis of the contact ellipse

auxiliary variables

surface coordinates of a cone surface

auxiliary variables

viii




Uy, Uy, Uy, auxiliary variables

Non-English Upper Case

b) surface
r shaft angle
T angle measured counterclockwise from the root to the tangent of the path on the

gear surface

N ratio constant
R open rectangle
A discriminant of an equation

Non-English Lower Case

« orientation angle of ellipse
<] mean spiral angle

é dedendum angle

€ specified tolerance value

v root angle

K principal curvature

Ky Kz = Kig

Ky K+ Ky

K, K, =K,

Kn normal curvature

Ky relative normal curvature of the mating surface




%(2)
3 (@)
£4,(9)
(Bay)™
(8™
UEANY
g

G;.Q

surface coordinate of a surface of revolution

pitch angle

angles formed between vectors ,17“) and €, , and ,17'(2) and ¢, , respectively
angular velocity

turn angle of the cradle when the work is being cut

rotation angle of the work while it is being cut

rotation angle of one member while it is being in meshing with another member of
a pair of gears

transmission function, the rotation angle of the gear in terms of that of the pinion
in a pair of meshing gears

transmussion function of a pair conjugate gear

transmission error function

predesigned parabolic function of transmission errors

linear function of transmission errors induced by misalignment

expressions of ¢/ and A¢] in a new coordinate system

blade angle

surface coordinate of a cone surface and a surface of revolution
angle measured counterclockwise from €, to €q,
auxiliary variable, § F ¢ £ ¢_

elastic approach

angle formed by the tangent to the curvature and first principal curvature




SUMMARY

A new approach for determination of machine-tool settings for spiral bevel gears is proposed.
The proposed settings provide a predesigned parabolic function of transmission errors and the
desired location and orientation of the bearing contact. The predesigned parabolic function of
transmission errors is able to absorb piece-wise linear functions of transmission errors that are
caused by the gear misalignment and reduce the gear noise. The gears are face-milled by head
cutters with conical surfaces or surfaces of revolution.

A computer program for simulation of meshing, bearing contact and determination of trans-

mission errors for misaligned gear has been developed. K A gzga”» jﬁﬁw; 7 j
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CHAPTER 1

INTRODUCTION

1.1 Introduction

The most important criteria of quality of meshing and contact of gears are the low level of noise
and the sufficient dimensions and location of the bearing contact. Sometimes these requirements
are contradictory and can be achieved by a compromise in the process of gear synthesis. Such a
method of synthesis for spiral bevel gears has been developed in this report.

Traditionally, Gleason’s spiral bevel gears are designed and manufactured with non-conjugate
tooth surfaces. By varying machine-tool settings the transmission errors can be of different forms,
which included a piece-wise linear function, an “S” curve, and a parabolic function, symmetrical
or otherwise. Only a parabolic function with gear lagging is prefered. The problem encountered is
that it is very difficult to reduce the level of a parabolic function of transmission errors with gear
lagging.

Litvin et al. (1] proposed a method for generation of spiral bevel gears with conjugate tooth
surfaces. Ideally such conjugate pair provides zero transmission errors. In practice, spiral bevel
gears are frequently required to operate under misalignment caused by mounting tolerances and
deflections. Using the Tooth Contact Analysis (TCA) programs we have found that the conjugate
spiral bevel gears cause lead functions of transmission errors — strong monotonous increasing or

decreasing functions for a cycle of meshing. These functions may be considered as linear functions




or almost linear functions (Figure 1). Due to gear misalignment the bearing contact can be shifted
from the desired location even to the tooth edge. For this reason it is necessary to control also the
location and dimensions of the bearing contact.

There is an opportunity to reach these goals if the gears will be designed as non-conjugate pairs
that transform rotation with a predesigned parabolic function of transmission errors. Then, as it
will be proven in the next section, a linear function of transmission errors will be absorbed and the
sensitivity of the gears to misalignment will be reduced.

The determination of pinion machine-tool settings is based on the local synthesis of the gears

proposed by Litvin {2, 3, 4]. The local synthesis must satisfy the following requirements:
1. The gear surfaces are in tangency at the chosen mean contact point.
2. The tangent to the path of contact has the prescribed direction at the mean contact point.

3. The contact ellipse for the tooth surfaces has the desired dimensions at the mean contact

point.

4. The transmission function ¢,(¢,) has the prescribed value at the mean contact point and its
second derivative is negative on gear convex side and positive on gear concave side. Here, ¢,

and ¢, are the rotation angles of the pinion and gear while they are being cut, respectively.

Requirement 4 means that the function of transmission errors is a parabolic one with gear lagging
within the neighborhood of the mean contact point.

Traditionally, a pair of Gleason’s gears is generated by two cones. In some cases the pinion is
generated by a surface of revolution instead of a cone surface to obtain better bearing contact and
to avoid an edge contact. Both cases are investigated and the machine-tool settings are determined

according to the local synthesis and predesigned function of transmission errors.




transmission €rrors

/ /

/ /otation angle of pinion

Figure 1: Transmission errors of conjugate gears caused by misalignment.
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1.2 Transmission Errors And Its Compensation

In theory a pair of mating gears transforms rotation with a constant gear ratio

3
it
3 'NE
f
=| =

where w, and w, are the angular velocities of the gears

N, and N,are the numbers of teeth of pinion and gear, respectively

Therefore, the transmission function is expected to be linear for ideal gears, i.e.,

(1.1)

(1.2)

However, the actual function ¢ (¢)) is always different from q;; (¢!) except at the mean contact

point. The transmission errors are defined as the difference of theoretical and actual functions of

transmission functions, i.e.,

bt N
D6 (6) = ¢,(8)) - 8,(4)) = &,(¢) ~ T4,

1

(1.3)

In general the transmission errors of gears may occur due to the following four reasons [5):

1. The gears cannot exactly transform rotation described by equation (1.2) because of the

method of their generation. Spiral bevel gears and hypoid gears that are generated by Gleason

methods are good examples for this case.




2. The gear axes are misaligned or the gear shafts are deflected. Zhang, in his dissertation {5],
has proved that the deflected gear shafts can be modeled as misaligned gear axes. Spur gears,

helical gears, and conjugate spiral bevel gears are very sensitive to misalignment.

3. Heat treatment deviation of the real gear surface is one of the most important factors in

surface distortion.

4. The elastic deformation of gear tooth surfaces under applied load.

Cases 1 and 2 among the above-mentioned are the main sources of transmission errors. They
will be discussed later. The topics of 3 and 4 are beyond the scope of this report and will not be
discussed.

For a pair of conjugate gears under misalignment, the investigation results in that the trans-
mission function ¢,(¢!) becomes a discontinuous piece-wise function that is linear or almost linear
for each cycle of meshing as shown in Figure 2. The corresponding transmission errors determined
by equation (1.3) are also an approximately piece-wise linear function as shown in Figure 3. Such
functions cause a discontinuity in the regular tooth meshing and usually impact at the transfer
point.

There is another type of function of transmission errors that is a piece-wise parabolic function
as shown in Figure 4. This type of transmission errors does not cause a discontinuity of regular
tooth meshing at transfer points. Gears with this type of transmission errors are not so sensitive
to misalignment. This statement is based on an investigation into the interaction of a parabolic
function with a linear func:ion.

Consider that a pair of gears is predesigned with a parabolic function of transmission errors.

This function may be represented by

(28" = a(¢)) (14)




FCACH

Figure 2: Transmission functions of gears under misalignment.
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Figure 3: Transmission errors caused by gear Misalignment.
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i 04.(8)

Figure 4. A piece-wise parabolic function of transmission errors.
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The level of transmission errors is a(2r/N,)’.

Misalignment induces a linear function of transmission errors. It may be represented by

(¢ = bg! (L5)

Since (Acﬁg)m and (Ad);)m are very small, the principle of superposition can be applied for the

interaction of functions (Ad>;)m and (A¢;)m. Therefore, the resulting function is

@ _

D¢, = (06)" +(86)" = a(8)’ + b4 (1.6)

Equation (1.6) can be rewritten in a new coordinate system by (Figure 5)

Ay = a(@) (1.7)

where

b’ , b
DY, =D+ W=+ o (1.8)

From equation (1.7) we know that although the misalignment occurs, the resulting function of
transmission errors represents the same parabolic function that has been translated with respect
to the given parabolic function. This means that the predesigned parabolic function (A¢;)m will
absorb the linear function (Ad);)m induced by misalignment. The level of transmission errors

remains the same since the parabolic function of each tooth translates the same amount.




Qe)” = bg!

/

——— ¢"
(1) 112
| (8g)) =a(e)
/ N,
NCACS ‘ DY, ()
A
¢,

Figure 5: Interaction of parabolic and linear functions.
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Misalignment changes the path of contact. The locations of transfer points are shifted to an
edge. The amount of the shift is determined by b/2a. In general, the absolute value of b increases
if the amount of misalignment increases. It is possible that an unfavorable ratio b/2a may cause
one of the transfer points to be off the tooth surface and that the function of transmission errors,
Ay, will become a discontinuous function for every cycle of meshing (Figure 6). To avoid this,
the level of predesigned function of transmission error, or the absolute value of a, should be chosen

with the expected level of transmission errors caused by misalignment.
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Figure 6: Discontinued parabolic function of transmission errors.
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CHAPTER 2

GLEASON’S SPIRAL BEVEL GEARS

2.1 Gleason System

The Gleason Works, Rochester, New York, is one of the leading companies that produces
equipment for manufacture of bevel and hypoid gears. William Gleason built the first machine in
1874 to cut bevel gears with straight teeth [6]. During the following years, the Gleason Works has
developed a set of machines to generate spiral bevel gears. The basic construction (Figure 7) of a
cutting machine consists of three major parts: the frame, the cradle, and the sliding base (7, 8].

When cutting starts, the work is plunged into the cutter. As the cutter rotates through the
blank, a relative rolling motion is produced between the cradle and the work spindle to generate the
tooth surface. While the cutter rolls out of engagement with the work, the cradle reverses rapidly,
the sliding base on which the work is mounted is translated with respect to the cutter, and the
work is indexed ahead for cutting the next tooth. This sequence of operations is repeated until the
last tooth is cut.

In the process of cutting, the head-cutter rotates about its axis, and the axis generates in the
cradle coordinate system a cylindrical surface. We may imagine that the cutter generates a tooth
of crown gear as shown in Figure 8. Therefore, the cutting process corresponds to the motion of
the gear rolling on a crown rack. The angular velocity of the head-cutter about its axis is not

related with the generating motions and depends only on the desired velocity of cutting. This is

13
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Cradle Housing

Work Offset

Machine Center to Back
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Machine Center
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Figure 7: An isometric view for a gear generator.
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Top View
Cradle Axis Cutter Axis
Cradle Housing
)/ Z
| | L
Cradle ‘
|
Machine Center—__ 3 /| Head Cutter
~—_
~
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Front View

Cradle

Machine Center Cutter Circle

Cutter Center

Figure 8: Cutting spiral gear teeth on the basic crown rack.
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an important advantage cf the Gleason methods of manufacture. Another advantage is that the
same method for generation can be used as well for grinding. Grinding is essential for producing

gears with hardened tooth surfaces and of high quality.

2.2 Head Cutters

Traditionally straight-sided blades have been applied in practice. The blades of the cutter
generate cone surfaces while the cutter rotates its axis. Figure 9 shows these two cones. A current

point B on the cone surface is represented in the coordinate system S, as follows:

B, [rcotw—ucosw-
B., usiny sin 6
B, = = (2.1)
B., usinzcosd
R 1 )

where u = AB and @ are the surface coordinates, r is the tip radius of the cutter, and ¥ is the
blade angle. For the inside blade of the cutter, ¢ is an acute angle. For the outside blade of the
cutter, ¥ is an obtuse angle.

Using equations {A.5) and (2.1) (provided usiny # 0), we obtain the equations of the unit

normal to the cone surface.

e, sin ¢
fie=| N, | =% | cosysing (2.2)
Ne, cos 1) cos @

The total differential of vector B, is




Figure 9: Generated cone surfaces of the head-cutter.
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~cos ¥ du
[dB.) = | siny(sin6du + ucosf df) (2.3)

sin ¢(cos @ du — u sin 6 df)

The total differential of vector 7,

0
[dn.) = % | cosycosfdf (2.4)
— cossinfdf
Equations (A.26), (2.3), and (2.4) yield
0 _ + cos v cos G df _ Fcosysinfdl - (2.5)
—cosydu  siny(sinfdu+ ucosfdf)  sintp(cos  du — usind db) oo ’
Equation (2.5) is satisfied if
dudf =0 (2.6)

One of the principal directions corresponds to du = 0; the other one to dé = 0. They can be

represented by equations

g, =98 (2.7)

i

gm = Ou (2.8)

@
o




Equations (2.3) and (2.7) yield

0
€, =% | cosé (2.9)
—sinf
Plugging du = 0 into equations (2.5), we have
PR (2.10)
1 :Futanz,/) '

The sense of the principal curvature relies on the chosen direction of the normal.

Similarly, the unit vector of the second principal direction is

—cosy
€p, = | sinysind (2.11)
sin v cos 6
The principal curvature is
k, =0 (2.12)

In addition to the cone surface, a tool provided by a surface of revolution is considered here.
This surface of revolution is generated by an circular arc that rotates about the cutter axis. Such
a surface can be applied as a grinding wheel or as a surface of a tool with curved blades.

Suppose the generating planar curve L (Figure 10) is an arc of a circle of radius R centered

at point (Rc,,0, R;,). The spherical surface is generated by the circle in the rotational motion

19
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for the curved edge of the head cutter.

Figure 10: Generating arc circle
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about the Z.-axis. Consider an auxiliary coordinate system S. which is rigidly connected to the
generating circle. Initially S and S. coincide. The generating curve may be represented in the

coordinate system S.: with the matrix equation

[ B, ]| [ R., + Rcos A ]
B, 0
= (2.13)
B, R., + RsinA
SR I 1 ]

where ) is the varied parameter for planar curve L. The parameter A lies within the following

intervals:

0< A< 7/2 if L is concave down;
Inside blade {

T < A< 37/2, if Lis concave up;

3r/2 < A < 2r, if L is concave down;
QOutside blade {

/2 <A< T, if L is concave up.

The auxiliary coordinate system S, rotates about the Z, axis and the coordinate transformation

from S.r to S. is (Figure 11)

(B..] [1 0o 0o 0][Be]
- B, 0 cosf sinf 0 B,
B. = = (2.14)
B, 0 —sinf cosf 0 B,
1] | 0 0 0 1] 1 |

Equations (2.13) and (2.14) yield

21
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Figure 11: Coordinate transformations to generate spherical surfaces.
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(B.,] [ R, +Rcosx ]
B B, (Re, + RsinA)sin
B, = =
B, (Rec, + RsinX)cos¥d
L 1 | L 1

(2.15)

Using equations (A.5) and (2.15), the unit normal to this spherical surface may be represented by

Ne, cos A
fie=| ne, | =% | sin Asiné
Ne, sin A cos @

(2.16)

According to Rodrigues’ formula, the principal directions on the generating surface correspond to

d) = 0 and df = 0, respectively. The unit vector of the principal direction corresponding to dA = 0

15

0
€, ==x | cosd
~sind
The principal curvature is
. sin A

' = ¥R, T Rsin)

The unit vector of the principal direction corresponding to df = 0 is

~sin A

€y, = + | cosAsin8

cosAcosé

23
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(2.18)

(2.19)




The principal curvature is

(2.20)

|-

2.3 Coordinate Systems and Sign Conventions

Left-hand gear-members are usually cut by the counterclockwise motion of the cradle that
carries the head-cutter. This motion is viewed from the front of the cradle and from the back of
the work spindle. Cutting is performed from the toe to the heel. Figure 12 shows the top and front
views of the machine when a left-hand gear-member is cut.

Right-hand gear-members are usually cut by motions that are opposite to the motions of the
left-hand members being cut. Cutting is performed from the heel to the toe. Figure 13 shows the
top and front views of the machine for this case.

We set up five coordinate systems in either case. Coordinate system S. is rigidly connected to
the head cutter, coordinate system S, is rigidly connected to the work, and coordinate systems
Sm, Sp and S, are rigidly connected to the frame. Axes Z,, and Zy coincide with the root line and
pitch line, respectively. Axis X,, is perpendicular to the generatrix of the root cone of the work.
Axis X, is perpendicular to the generatrix of the pitch cone of the work. Axes Z, and Z,, coincide.
Origin Oy, is located at the machine center, and origins O, and O, are located at the apex of the
pitch cone of the work.

Three special machine-tool settings, which are the machining offset, machine center to back,
and the sliding base, are used only for the generation of pinions. The machining offset, denoted
by Eyn, is the shortest distance between the cradle axis and pinion axis. In figures 12 and 13, L,,

represents a vector sum of machine center to back, Xpcp, and the sliding base, Xgp. The change

24
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Figure 12: Top and front views of a left-hand gear generator.
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Figure 13: Top and front views of a right-hand gear generator.
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TABLE 1: SIGN CONVENTIONS OF MACHINE-TOOL SETTINGS.

Right-Hand Member

Left-Hand Member

Cradle Angle + | counterclockwise (CCW) clockwise (CW)
q - clockwise (CW) counterclockwise (CCW)
Machining Offset + above machine center below machine center
E,, — | below machine center above machine center
Machine Center to Back | + work withdrawal work withdrawal
Xmce - work advance work advance
Sliding Base + work withdrawal work withdrawal
XsB - work advance work advance
L., + | Xsp: + and XpycB: — Xsp: + and Xpycp: —
— ! Xsp: - and XpycB: + Xsp: — and Xpep: +

of machine center to back is directed parallel to the pinion axis and the direction of the sliding base

is pointed parallel to the cradle axis.

The sign conventions for machine-tool settings are given in Table 1.

2.4 Generated Tooth Surfaces

The generated surface L is an envelope of the family of the tool surface £¢. Surfaces Lw
and X contact each other at every instant along a line which is a spatial curve. Surface Ty is
conjugate with ¥¢. In mathematical sense the determination of a conjugate surface is based on

the theory of an envelope of a family of given surfaces. In differential geometry, to determine Tw

we must find:

(a) the family of surfaces Xg generated by the given surface L¢ in the S, coordinate system

27




and

(b) the envelope Ty of the family of surfaces Tg.

The matrix representation of the family of surfaces ¥4 may be represented by the matrix equation

[Bw] = [Muc] [Bc] (2.21)

where [M,,] is a matrix which describes the transformation of coordinates from the “old” coordinate

system S; to the “new” coordinate system S,,. From Figures 12 and 13, we obtain

[ch] = [Mwa] [Map] [Mpm] [Mmc] (2'22)

We can obtain [M,,,] from Figure 14 as

[ cos¢, Esing, 0 O]

Fsing,, cos¢, 0 O
[Mwa] = (223)

where ¢, is the rotation angle of the work while it is being cut. Here the upper sign corresponds
to the generation of a left-hand spiral bevel gear that is shown in Figure 12, and the lower sign
corresponds to the generation of a right-hand spiral bevel gear shown in Figure 13. Henceforth we
will obey this notation.

The transformation matrices [M,p) and [M,,] can be obtained from Figures 12 and 13 as

28
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Figure 14: The rotation angle of the work while it is being cut.
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cosg 0 sinp O

(Mep) = (2.24)
—sing 0 cosp O

cos6 0 —siné —Lpsing |

0 1 0 +Fn
(Mpm] = (2.25)
sind 0 cosé Lycosé

0 0 0 1

where p and ¢ are the pitch angle and dedendum angle of the work, respectively. To derive the
transformation matrix (M|, let us apply an auxiliary coordinate system S, rigidly connected to

the tool (Figure 15). Thus

{Mmf:] = [Mms”MSCJ

~

1 0 o o011 o 0 0

0 cos¢., <sing, 0 0 cosq Fsing TFssing
= (2.26)
0 TFsing, coso, tsing cosq scosgq

<
o

o 0 o 1j{o o o 1

where ¢, is the turn angle of the cradle while the work is cut, and s is the radial setting. The
determination of the envelope Ty of the locus of surfaces £¢ is based on necessary and sufficient
conuitions of envelope existence that have been developed in the classical Differential Geometry. A

simpler method representation for determination of necessary condition of Zw existence is bas.d
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Figure 15: Auxiliary coordinate system JS,.
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on the geometric property of conjugate surfaces: at points of tangency of the generating surface
¥ ¢ and the generated surface Ly the common unit normal 7 to the surfaces is perpendicular to

Flewm

the slide velocity of these two surfaces [9, 10]. This is given by the scalar product

- (cw)
n-V

=0 (2.27)

In the modern theory of gearing, equation (2.27) is called the equation of meshing. This equation
is of fundamental importance in the kinematics of gearing. Since equation (2.27) is valid in any
reference system, we will derive the equation of meshing in the S,, coordinate system. Let us

(W)

. 5(C: " .
designate ,,V,(n) and 4V, the transfer velocities of common contact points By, on the cutter and

the work, respectively. Thus

V,,(ncm = trv,(nC) - "VT(”M (228)

The cradle rotates about the Z,, axis with the angular velocity dz’i,? (Figures 12 and 13); therefore,

the transfer velocity ,, 7,(:) is represented by the equation

" = @y X B (2.29)

The work rotates about the Z, axis with the angular velocity di:nw) (Figures 12 and 13) which does
not pass through the origin O,, of the S;, coordinate system. It is known from the theoretical
mechanics that the angular velocity G.)':nm may be substituted by an equal vector J:nm which passes

through O, and a vector-moment

0,.0, x &) (2.30)
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Note that the moment has the same unit and physical meaning as linear velocity. Thus

It is evident from Figures 12 and 13 that

1
[wi:)] = ;w(c) 0
0
—sinvy
o] =™ |0
cosy
0
Omoa = :FEm
L

(2.31)

(2.32)

(2.33)

(2.34)

In equation (2.33) v is the root angle of the work. Substituting equation (2.29)-(2.34) into equation

(2.28), we obtain

" (Em B, )cosy 1

Ve = i:w(qu, + w(w)[(Bm, F Lp,)siny F By, cos?]

;w(C)Bm, iw(W)(Bm, - E;)siny
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The coordinates of the common contact points B,, may be obtained from equations of the generating

surface T¢. Then we get

(Bm] = [Mmc][Bc] (2.36)

The common unit normals #i,, may be represented by the unit normals to Z¢. Therefore

[nm] = [me] [nc] (2.37)

where [ L) is the rotation matrix obtained by eliminating of the last row and last column of the
corresponding matrix [Mp,].

Hence, if £¢ is a cone surface, substituting equations (2.1) and (2.26) into equation (2.36) we

obtain
r ] I 7
B, rcoty — ucosy
Bm, 1 usinysinT T ssin(q — ¢.)
= (2.38)
Bm, usiny cos T + scos(q — @)
SRR B 1 ]

where 7 = 0 F g+ ¢,. Substituting equations (2.2) and (2.26) into equation (2.37) the unit normals

may be represented as

Nng siny
N, | =% | cosysinT (2.39)
T, COs1PCOS T

Similarly if Z¢ is a spherical surface, substituting equations (2.15) and (2.26) into equation (2.36),

we obtain
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Bm: Rc, + Rcos A
B, (Rc, + RsinA)sinT ¥ ssin(q — ¢.)
= (2.40)
B, (Rc, + RsinX)cos T + scos(q — @)
]| 1 J

Substituting equations (2.16) and (2.26) into equatioti (2.37) the unit normals may be represented

as
N, cos A
Nm, | = | sin)sinT (2.41)
N, sinAcosT
Designate
e
Mew =~ (2.42)

Using equations (2.27), (2.35), (2.38), and (2.39), we may obtain the equation of meshing for the
case that X is a cone surface by

(u~ rcot Ycosy)cosysinT + s{(m,, — siny)cosysinb F cosysinysin(g — ¢, )]
(2.43)

+ E,,(cosysiny + sinycosypcos7) — Ly, sinycos¢sint = 0

For ¢ being a spherical surface, using equations (2.27), (2.35), (2.40), and (2.41), the equation of

meshing is represented by

(R., cos A — R, sinA)cosysinT + s[(m,, —siny)sinAsind F cos<y cos Asin(q — ¢ )]
(2.44)
+Emp(cosycosA +sinysinAcosT) — Ly sinysinAsint = 0
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Equations (2.43) and (2.44) relate the generating surface coordinates (u and 6 for a cone surface

or A and # for a surface of revolution) with the turn angle ¢,.
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CHAPTER 3

SYNTHESIS OF SPIRAL BEVEL GEARS

3.1 Gear Machine-Tool Settings

We designate for the following discussions the gear-generating tool surface by X¢, the generated
gear surface by ¥,, the pinion-generating tool surface by Xp, and the generated pinion surface ;.
A parameter with the subscript i indicates that it is related to surface ;. To set up the gear

machine-tool settings, the following data are considered as given:

I: shaft angle

N,: gear tooth number

N,: pinion tooth number -
7, gear root angle

A: mean pitch cone distance

B: mean spiral angle

Ye: blade angle for gear cutter

d.: average diameter of gear cutter

w,: point width
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3.1.1 Preliminary Considerations

We prefer to calculate the values of pitch angles and dedendum angles rather than obtain them
from the blank design summary because the data in the summary are not accurate enough for
computer calculations.

The gear pitch angle is represented by

Y, = arctan _sinl (3.1)
—Jﬁ + cosT
The pinion pitch angle is
p, =T —p, (3.2)
The dedendum angles are
b= -n G=pm- (3.3)

3.1.2 Gear Cutting Ratio

The process of gear generation is based on the imaginery meshing of a crown gear with the
member-gear. The instantaneous axis of rotation by such meshing coincides with the pitch line,
axis Zp, that is shown in Figures 12 and 13. The generating surface X, which may be imagined as

the surface of the crown gear, and the to be generated gear surface £, contact each other at a line
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at every instant. The ratio of angular velocities of the crown gear and the being generated gear (the
cutting ratio) remains constant while the spatial line of contact moves over surfaces Lg and X,.
The determination of cutting ratio is based on following consideration. The angular velocity in

relative motion is

& =37 -3 = dk, (3.4)

This means that vectors &'° and Ep are collinear. Since equation (3.4) is valid in any reference

frame, let us derive it in the Sy, coordinate system. From Figures 12 and 13 we have

sin é,
kp=1| 0 (3.5)

cos d,

By replacing the superscript ‘¢’ by ‘G’ in equation (2.32) and ‘w’ by ‘2’ in equation (2.33), we may
represent in matrix from angular velocities 39 and &7, Consequently, we obtain the following

equation

2 . 2
F0'? £ 0 sin Y. Fuw'? cos 7,

.6
sind, cos §, (36)
Equation (3.6) results in that
w'?  sin 1)
— o —.2 .
Mg, = w(z) cos 52 (3 7)
39




3.1.3 Cutter Tip Radius, Radial Setting, and Cradle Angle

Figure 16 shows that the inside and outside tip radii of the head-cutter are represented by
1
e = §(dc F W) (3.8)
Figure 16 shows the front view of the installation of the head cutter. From the relations between

the lengths and angles of the triangle 0,,0.M,, we may express the radial setting s, and cradle

angle g as follows:

d?
Sg = \/—42 + A% cos’ §, — d Acosé, sinf3 (3.9)

and

&

2 2 2 G
A cos 8, +s_ —

4
2As cosé, (3.10)

qs — arccos

3.2 Determination of the Mean Contact Point on the Gear Tooth Surfaces

The gear and pinidn surfaces of spiral bevel gears are in point contact at every instant. The
mean contact point is the center of the bearing contact and its location is selected generally at the
middle of the working depth on the gear tooth. Figure 17 shows a gear tooth surface. Section AD
is the gear tip and it is parallel to the generatrix of the root cone of the pinion. Section BC is the
pinion tip and it is parallel to the root line of the gear. The working area is within CABCD. In

the S, coordinate system, line AD may be represented by
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Figure 16: The front view of the installation of the head cutter
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Figure 17: Gear tooth surface.
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B,, = By, tand, — ¢ (3.11)

where ¢ is the clearance and ¢, is the pinion dedendum angle. Line BC is represented by

B,, = =By, tané, + ¢ (3.12)

The mean contact point is located on a line which passes through the middle point of the two points
at which the normal section of the gear surface intersects line AD and line BC, respectively. In
addition, the mean contact point must be on the gear surface. This means that it must satisfy the
equation of meshing for the gear being generated by the tool. We will use these two requirements
to determine the location of the mean contact point and represent the procedure of derivations as

follows

STEP 1: The initial guess for 6 is

)
i

G i(qG—B+7T/2)

STEP 2: Determination of u,; based on the given 6,
Equation (2.43) determines parameter u,. The turn angle ¢, is set to zero when equa-

tion (2.43) is applied.

STEP 3: Representation of gear tooth surface in coordinate systems S. and S,
Equation (2.1) determines the gear tooth surface in coordinate system S.. The gear tooth

surface may be represented in the S, coordinate system as follows:

[Bp) = [Mpm] [Mme] [ Be] (3-13)
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Transformation matrix [Mpm,] may be cbtained from equation (2.25) by setting E,, and L,

to zero. Equation (2.26) determines matrix {My,.].

STEP 4: Determination of middle point
The z coordinate of the middle point M of the two points, which are the intersections of the

normal section of the gear tooth surface and the gear tooth tips, may be obtained by

M,, = B,.(tané, — tané,)

.= : (3.14)

The above equation is derived by dividing the sum of equations (3.11) and (3.12) by 2.

STEP 5: Judgement of u,

The acceptable value of u_ is determined by the following criterion:

{Bp, — Mp_ | < ¢

where ¢ is a specified tolerance value. If the above criterion is satisfied, parameters u, and 6
of the mean contact point are determined. Otherwise, repeat STEP 2 to STEP 5 by a new

value of 8, until the criterion is satisfied.

As a matter of fact, the determination of the location of the mean contact point is the same as

that of a root of equation
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The new value of the 6, in STEP 5 depends on which method is used to solve this equation. In
this study Newton's method was used.

So far we have already determined parameters u_ and §_ of the mean contact point. Repeating
the task done in STEP 3, we have the coordinates of the mean contact point B. The common unit

normal 77 to surfaces £s and ¥, at the mean contact point B is

[np] = [Lpm) [Lme] [ne] (3.16)

where matrix [Ly,| is obtained by deleting the fourth row and column from matrix [M,,,] given
by equation (2.25). Similarly, we may obtain rotation matrix [Ln,.] from matrix [M,,.] by equa-
tion (2.26). Although the unit normal has two directions, we choose the direction corresponding to
the positive sign in equation (2.2) regardless of the hand of the gear. The principal directions at
the mean contact point B on the gear tool surface £ in the S, coordinate system may be obtained

by the following coordinate transformation:

[%,,,,J = [Lom][Lme] [ec, (3.17)

<

Here we choose positive sign in equation (2.9) as the direction of the first principal direction.
The second principal direction is determined by rotating of the first principal direction about unit
normal by 90°.

The principal curvatures and directions at the mean contact point B on the gear surface £, may
be derived according to the formula expressed in Section A.2. Note that surfaces L and ¥, are
in line contact. To apply these formula, we may consider that surfaces ¥, and X are equivalent

to surfaces £r and Xg, respectively, in Section A.2.
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The derivation of the principal curvatures and directions at the mean contact point B is per-

formed as follows:

STEP 1: We represent the angular velocity & in the S, coordinate system as follows:
Y g P A

—siny,
| =20 | 0 (3.18)
cos i,

This is a direct result from drawings of Figures 12 and 13.
STEP 2: We represent the angular velocity &' in the Sp coordinate system as follows:
cos é,

[w(c)} = 707 0 (3.19)

sin 6,

This is also a direct result from Figures 12 and 13.

STEP 3: The relative angular velocity J:G) is represented by

—sinp, + mg, cosé,
(2)

~(2G) ~(2) ~(G)
=w, —-w, =tw

wp P 4

0 (3.20)

cos y, + mg, sind,

STEP 4: The transfer velocity of the mean point B on surface Xg is

2(6) _ .(6) =

ter =Wy X Bp (321)
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STEP 5: The transfer velocity of the mean point B on surface ¥, is

32 _ ) oz

t,V; =W X Bp

STEP 6: The relative velocity of the mean point B is

AR L

STEP 7: the projection of 17:6) on the é’GIP is

VS =75 g,
STEP 8: The projection of I_/;m) on the é'G"p is

Vc(=2nG) = “;:26) -.an
sTEP 9: Using equation (A.33), we obtain

a4 = —K’G[V((:IG) [ _‘:G) —P-‘G,p]
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(3.23)
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(3.25)

(3.26)




STeP 10: Using equation (A.35), we have

— [0 7pe, ] (3.27)

Step 11: Using equation (A.36), we obtain

2 2
(2G) (2G) - {(2G) ={(2G) . ~(2) =(G) {G) ~2(2)
0y, = ko, (Var ) + o, (Ver ) = [y =V, %] = fip (3 x oV, =@ x V)

! —
Note that m_ =0

STEP 12: To determine the principal directions at point B on gear surface, we first use equa-

tion (A.40). Thus

IJa

)
%19 %29 (3.29)

2 2
Ay, =0+ (KG, - NGH)G'B.‘S

tan20,. =

Rotating unit vector €, about the unit normal vector @ by -o,,, we may obtain unit
vector €, . Rotating unit vector €, abou. the unit normal vector # by 7 /2, we may have

unit vector €, .

STEP 13: Using equations (A.41) and (A.42), we may determine the principal curvatures on the

gear surfaces as follows:

2 2
Gy — Gyt (K’GI ~Keg )as,

Fap =™ Fag = a,, cos 20, (3.30)
a2 + a2
Ka, + Kyg = (K’G; + KGH) - “1—3;“—”- (331)
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STEP 14: Eliminating «, by considering the sum of equations (3.30) and (3.31) together and then
dividing the sum by 2, we can determine K,,- Eliminating &, by dividing the difference of

equations (3.31) and (3.30) by 2, we can determine &, .

3.3 Local Synthesis

The determination of pinion machine-tool settings is based on the idea of local synthesis of
gear tooth surfaces proposed by Litvin (2, 3, 4]. The goal of local synthesis for meshing of spiral

bevel gears is to satisfy the following requirements:
1. The gear tooth surfaces must contact each other at the prescribed mean contact point B.
2. The contact ellipse for the gear tooth surface must have the desired dimensions at point B.
3. The tangent to the contact path must have the prescribed direction at point B.

4. The instant gear ratio m,, (¢,) and its derivative m; (¢,) must have the prescribed values at

point B.

The local synthesis for the gear tooth surfaces connects the concept of meshing and the concept
of bearing contact. It provides the optimal conditions of meshing for the gear tooth surfaces being
in mesh at, and within the neighborhood of, the mean contact point B. The local synthesis needs
the information on the characteristics of the tooth surfaces of the zero, first, and second orders.

Starting the local synthesis we already know the location of the mean contact point B on the
gear surface, the unit normal to the gear tooth surface at point B, the principal curvatures and
directions at point B on the gear tooth surface.

We will consider the local synthesis in a fixed coordinate system S;. Figure 18 shows the

relations among Sy, fixed coordinate systems which are attached to the frame of the gear generator,
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and fixed coordinate systems connected to the frame of the pinion generator. From Figure 18 we
know that §¢ and Sp(a) coincide with each other. Therefore, the coordinates of the mean contact
point B, the orientation of the surface unit normal, and the principal directions at the point B on

the gear surface are known since they have been determined in the Sp(a) system.

3.3.1 Preliminary Considerations

Spiral bevel gears transform rotation motion between intersecting shafts with an instantaneous
point contact of surfaces. It corresponds to the second case discussed in Section A.2. Some elements
of matrix [A] shown in equation (A.30) are not related with the principal curvatures and directions
of the pinion surface; therefore, they may be derived at the stage where the principal curvatures and
directions are not known yet. We will consider that all derivations are performed in §; coordinate
system. Throughout the rest of the report, we will drop the subscript if it is considered in the S
coordinate system.

The following representation is the result of direct observation of drawings of Figure 18.

sin p,
WM =™ 0 (3.32)
oS f1,
—sin g,
W] = £m, 0" 0 (3.33)
cos p,

Recall that the upper sign in the equations corresponds to a left-hand member. As far as a pair
of spiral bevel gears is concerned, the hands of the spiral must be opposite; a left-hand gear

(pinion) and a right-hand pinion (gear) constitute a pair. Therefore, if we take the upper sign in
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equation (3.32), we must pick up the lower sign in equation (3.33). The relative angular velocity is

-(12) (1) -(2)
W = w - w

The transfer velocity of the mean contact point B on surface I; is

=) (1)

vV =W X .E

The transfer velocity of the mean contact point B on surface ¥, is

502 _ (2)

t,-V =w X .§

The relative velocity of the mean point B is

—~(12) (1) 2(2)

Vv = trV - trV

The projection of V""" on the vector g, is

(12) _ m02)
‘/21 = V : 27
. . ~2(12 - .
The projection of V' " on the vector &, is
(12) _ a3
%H = V ' 1 ¥4

(3.34)

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)




Let surfaces £; and Tx, I, and X g, be equivalent, respectively. Equation (A.33) yields

a, = —ky Vay - @G, (3.40)
Using equation (A.35), we obtain
(12) -(12) L,
a,, = "’{'2HV3H - [w nezu} (3'41)

Equation (A.36) yields

2 2
(12) (12) _ o(12) ~2(12)
o, = Ky (Var) 8y (Vo) —[R& V)

(3.42)

2
~ (1)} —(2) ~(2) (1) (1) — b =
—n-(w X 4V =@ X 4V )+(w )m’ (nxkg)-B

where k, is the unit vector along the axis of rotation of the gear. It is represented by (Figure 18)

—sinpy,
(k2] = 0 (3.43)

cos i1,

In general, spiral bevel gears are designed and manufactured with non zoniugate tooth surfaces.
Varying the machine-tool settings it is possible to obtain a lead function of transmission errors, a

parabolic function with pinion lagging, or a parabolic function with gear lagging. Only a parabolic
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function with gear lagging is good for applications. Therefore, for the convex side of gear tooth m],
we must provide a negative value, and for the concave side of gear tooth m;, must be positive. The
absolute value of m; controls the level of the transmission errors. We consider m) as an input.
On the gear surface a path of contact that appears almost straight and substantially vertical
to the root may fully satisfy the operating requirements in many cases; however, it should not be
assumed that this is true for all cases. Sometimes a different direction or shape may be preferable
[11]. The tendency of the direction of the contact path may be determined by the relative veloc-

. 3(2)
ity .V

at the mean contact point on the gear surface. Let v, denote the angle between the unit
vector €, at the mean contact point on the gear surface and the direction of tangent at the same

point to the path of contact. The relation between the principal directions and the direction of the

contact path may be represented as follows (Figure 19):

v, =T +o,, (3.44)

The angle T is measured counterclockwise from the root to the tangent of the path. This angle is

considered as an input.

3.3.2 Relations Between Directions of the Paths of the Mean Contact Point in its Motion over the

Gear ind Pinion Tooth Surfaces

Figure 20 shows the common tangent plane to the gear and pinion surfaces at the mean contact

point B. The notations in Figure 20 are as follows:

€, and €, : unit vectors of the principal directions on the gear surface

v sliding velocity at point B

R7aP velocity vector of contact point B in its motion over the pinion surface
7ol velocity vector of contact point B in its motion over the gear surface
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Figure 19: The direction of the contact path.
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A1) (1), . . —5(1) —~ -
V2, and V.t the projections of vector V'’ on vectors €, and €y

(2

1) =~ ) ~ .
v, and v,: angles formed between vectors .V and €, , ,V' " and €, , respectively

The relation between angles v, and v, depends on parameters in motion and the principal

curvatures of the gear tooth surface. For derivations we will use the following equations:

>(2) —>(12)

RSN VAL 7 (3.45)
that vields

RIS 7 T f (3.46)

Vi = Vay + Vag (3.47)
From the geometric relations shown in Figure 20 we have

Vi = Vi tany, (3.48)

Vag = Vi, tany, (3.49)

Substituting equation (3.48) and (3.49) into equation (3.47), and then substituting equation (3.46)

. . . . 12 2
into (3.47), we obtain an expression for ,Vz(;’ in terms of V) ¥

21 » Vo » ¥y, and v, as follows

12 (12
) v 2 )tanuz

n
R7A
7
tany, — tany,

(3.50)
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A1)

2, are related as follows:

According to equation (A.29), ,V;I” and ,V

(1) L)
ay, V2 + g, V2 = ay, (3.51)

Here surface ¥, is equivalent to surface Xg; surface £, to surface L. Substituting equation (3.49)

into equation (3.51), we have

(a,, + a,, tany,) 43 = ayy (3.52)

Finally, combining equations (3.50) and (3.52), we have the relation between angles v, and v,

‘ S12) (12)
(ass + Gy, Vo )tanuz - a:xvzn

tanvy, =

(3.53)

S12) 1 -012) -
a,(Vz, - V2, tanyv,)+a,,

3.3.3 Principal Curvatures and Directions of the Pinion Tooth Surface at the Mean Contact Point

The derivation of principal curvatures and directions of the pinion tooth surface at the mean

contact point is based on the following procedure.

STEP 1: Representation of A and B in terms of coefficients a,,, a,,, and a,,

11
We recall that the lengths of semiaxes of the contact ellipse, a and b, are determined by
parameters A, B, and ¢(see Section A .4).

The sum of equations (A.31) and (A.34) yields
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Ay, + 8y, = Ky — Ky (3'54)

Substituting equation (A.31) by equation (A.34) we obtain

a,, —a,, = K,, — K,, COs20, (3.55)

We may represent parameter .4 in equation (A.54) in terms of a,,, a,,, and a,, as follows:

A=-= [(a11 +ay,) +4/(a, - ay,)" +4a’ ] (3.56)

Also, the representation of parameter B in equation (A.55) in terms of a,, a,,, and a,, gives

1
B=- [(a11 +a,) - \/(a“ - a,) +4d, (3.57)

Furthermore, equations (3.56) and (3.57) yield

@y, + ay) + 4A] = (ay, — a,,)" +4a,, = [(ay, +a,,) + 4B) (3.58)

Let T denote the smaller absolute value of A and B. Therefore, equation (3.57) can be written

as

2 2 2
[(au t+ azz) + 4T] = (au - azz) + 4012 (3'59)
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(1)

. ) . 1)
STEP 2: Representation of coefficients a,,, a,,, and a,, in terms of "Vi‘(l and ,V;,

Using the first two equations in (A.29) and equation (3.54), we may derive a system of three

linear equations in unknowns a,,, a,,, and a,,

(1) (1)
7‘V21 a, + - 257 Gy =ay,
(1) (1}
Va2, ag, + . 2 Qg = Qo (360)
a, + + Ay = By

where K, = k,. — & ;. Using Cramer’s rule we may solve equations (3.60) as follows:

2
)
a13 T‘fZ(;) ha a23 1“/2(117) + K‘A (1'1/2(;1)
all = (1) 2 (1) 2 (361)
(57) + (45)

(1) (1) (1) (1)
a]:; T‘/2H + a,, T‘Z] - K'A f‘/2] 71/2]] (3_62)

(Vi) + ()

12

2
(1) (1) (1)
—a, WV, +a, Vo, K V2
o, = 13 T¥2; 23 V2 A ( 1 ) (3.63)

(1Y m\’
() + (V)

The third equation in (A.29) is

(1) )
ay, 1'V2Il + a,, "'V'*‘(tlz = Gy, (3'64)

Substiiuting equation (3.49) into equation (3.64), we have

A . S— (3.65)




Plugging equations (3.49) and (3.65) into equations (3.61)—(3.63), we obtain the following

results
a,, =dk, +b (3.66)
a, =d,k, +b, (3.67)
a, =d,k, +b (3.68)
where
d = _.t_ali”l_. (3.69)
"7 14 tan’ v, '
d = _—tany, (3.70)
1+ tan’ v, '
1
d = ————— 3.71
14tan’y, ( )
a2 - a2 ta.n2 v
b, = 2 2 (3.72)
a,,(1 + tan” »,)
b _ (a'23 + a'13 tan Vl )(a13 + a23 tan Vl) (3 73)
2 = .

a,,(1+ tan’ v,)
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STEP 3: Determination of &,
Equations (3.59) and (3.66)—(3.71) lead to
47" — (8] +8))] (1 + tan’ »,)

K, = — 3.74
A 27 (1 + tan’ v, ) + b, (1 — tan’ »,) + 2b, tanv, (3.74)

Since k, = K,z — K5, equation (3.74) becomes

47" — (b +8))] (1 + tan’ v,)
27(1 + tan’ v,) + b,(1 - tan’ v,) + 2b, tany,

(3.75)

Note that

(3.76)

“Nl ™

where t is the semimajor axis of the contact ellipse. This is an input datum. In general, it
is about one sixth of the width of the gear tooth. Gleason Works suggests that the elastic

approach ¢ is 0.00025 inches [11].

STEP 4: Determination of q,,, a,,, and a,,

11?

Substituting equation (3.74) into equations (3.66)-(3.68), we obtain a,,, a,,, and a,,.

STEP 5: Determination of o,

Using equations (A.32) and (3.55), we obtain

2a,,

tan20,, = ——mM——
Kia — Gy + a,,

(3.77)
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It provides two solutions for ¢,,, and we will choose the smaller value. Rotating unit vector &,
about the urit normal vector 7 by —o,,, we may obtain unit vector €,,. Rotating unit

vector €, about the unit normal vector @ by 7 /2, we may obtain unit vector €,

STEP 6: Determination of &,

Using equation (A.32), we obtain

= 20 (3.78)

K
148 4
sin 20,

STEP 7: Determination of £, and &,

The principal curvatures of the pinion surface at the mean contact point B are determined

by

k, =2zt ha o Bp TR (3.79)

3.3.4 First Order Characteristics

Four surfaces, the gear head-cutter surface ¢, the gear surface ¥,, the pinion head-cutter
surface X p, and the pinion surface X, are in tangency simultaneously at the mean contact point B.
It implies that these four surfaces have a common normal at the mean contact point. We can use
this information to determine pinion blade angle v, and parameter 7.

The representation of the unit normal to the pinion head-cutter surface in the Sy coordinate

system is
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ngl = [LignllLymma)Laman]ngm)

-1 0 0 cosd, 0 =—sind,
= 0 -1 0 0 1 0

0 0 1 sind, 0 cosé,

( 1 0 0 1 0 0 P
0 cos¢, Lsing, 0 cosg, Fsing, m P
L 0 Fsing, cos¢, 0 =£sing, cosg, n (p

(3.80)

Let us consider the straight-edged blade first. Equation (2.2) describes the unit normal in

the S. coordinate system. Before plugging equation (2.2) into equation (3.80), we must investigate

the sense of equation (2.2). From Figure 18 we know we must choose the minus sign for the unit

normal. Therefore, equations (2.2) and (3.80) yield (subscript ‘f’ is dropped)

n, cos d, siny, — siné, cos s, cos T,
n, | = cos Y, sinT,
n, —siné, siny, — cos b, cos P, cos T,

Multiplying n; by cosé,, n, by —siné,, and then considering their sum, we obtain

nzcosd, — n,siné, = siny,

Obviously, the pinion blade angle is

arcsin(n; cos§, — n,siné,) Gear Concave fide
Yp =
(r —4p) Gear Convex Side

(3.81)

(3.82)

(3.83)




The z component in equation (3.81) may be rewritten as

ng —cosd, siny,

= 3.84
€S Te —siné, cosy, (3:84)
The y component in equation (3.81) may be rewritten as
. n,,
= 3.85
sinTp, = — v ( )
The parameter 7, may be obtained by
sinT
= 2arctan ——2— 3.86
Tr R To (3.86)
Let us now consider the curve-edged blade. Equations (2.16) and (3.80) yield
Ng cosd, cos A, —sind, sin A, cos 7,
ny | = sin A, sin T, (3.87)
n, —sind, cos A, — cosé, sinA, cos T,
Multiplying n; by cosé,, n, by —siné,, and then considering their sum, we obtain
cos A\, = ngcosd, — n,siné, (3.88)
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The quadrant in which the parameter A, locates may be determined by the discussion stated in
Section 2.2
The blade angle is the angle formed by a line tangent to the blade surface at the mean contact

point and a line perpendicular to the cutter head face. Thus we have

5/2x — A, pinion concave side, blade concave down;

3/2r — A, pinion concave side, blade concave up;

Yp

1/2r — X, pinion convex side, blade concave down,;

3/2m — A, pinion convex side, blade concave up.

Rewriting the z component in equation (3.87), we have

ng — cosd, cos A,

= : 3.89
oS Te —siné, sin ), (3:89)
The y component in equation (3.87) may be rewritten as
. ny
- 3.90
TP = S Ap (3.90)

Substituting equations (3.89) and (3.90) into equations (3.86), we may obtain 7,.

3.3.5 Principal Curvatures and Directions of the Pinion Cutter Surface at the Mean Contact

Point

The first principal direction of the pinion cutter surface at the mean contact point may be

represented in the S, coordinate system as follows:




[e,,lj] = [Lipn)Lymm@ [ Lnman]lep, ] (3.91)

Using equation (2.9) and (3.91), we may obtain the first principal direction for the straight-edged

cutter. It is

siné, sinT,
[ePI,] =z cos T, (3.92)

cos é, sin s

Using equations (2.17) and (3.91), we may obtain the first principal direction for the curve-edged
cutter. The result is the same as for the straight-edged cutter, that is described in equation (3.92).
In above equation, there are two senses. Only the direction which forms the smaller angle with
the gear cutter first principal direction can be chosen. From the first order information we have
already determined the parameter 7,; therefore, the first principal direction of the pinion cutter
is also determined. The unit vector of the second principal direction of the pinion cutter surface
may be obtained by rotating the unit vector of the first principal direction of the pinion cutter
surface, é’PI, about the common normal, 71, by an angle =/2.

We use the concept discussed in Section A.2 to derive the principal curvatures of the pinion
cutter surface at the mean contact point. We recall that surfaces £p and ¥, are in line contact in
the process of generation. Hence, using equation (A.37), we obtain

a,a, —a, =0 (3.93)

1122 12

Substituting equations(A.31), (A.32), and (A.34) into (3.93), we obtain the first principal curvature

of the pinion cutter
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2 . 2
Kpp(Ky, €OS" Op + K siD 0p ) — K Ky (3.94)

.2 2
- K, Sin 0, — K, COS" Op,

.3 =
P

7 K

Pp

The second curvature of the pinion cutter is zero for a straight-edged cutter (see equation (2.12))
and F1/R for a curve-edged cutter (see equation (2.20)). Since the principal curvatures and di-
rections of the pinion cutter surface at the mean contact point have been determined, some data
relating to pinion machine-tool settings may be obtained without any difficulty.

Let us consider a straight-edged cutter first. Rewriting equation (2.10), we may obtain

1
—_ .95
e Ke, tan v (3.95)

We choose only the positive sign in equation (2.10) since we have specified the direction of the unit

normal 7i. We may represent the mean contact point B in the S, (p) coordinate system as follows:

(Bmir] = [Mm(P)p(m] [MP(P)f] (B4] (3.96)

where
[ cosé, O sind, 0 ]
0 1 0 FE.,
[Mmm,,(m] = (3.97)
—sind, 0 cosé, —Lnm
L 0 0 0 1
and
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(-1 0 0 0]

0 -1 00
[MP‘P’f]:

0 0 10

0 0 0 1|

Considering only the x component of the above equation, we obtain

B, = —By, cosé, + By, siné,

Using equation (2.38), we obtain r, as follows:

7, = (Bm, + up cosy,)tany,

Let us now consider the curve-edged cutter. Using equation (2.18), we obtain

sin A,

R, =+ - Rsin),

K’P,

The parameter R., may be obtained by equations (2.40) and (3.99). That is

R.. = Bp, — Rcos A,

The cutter tip radius may be represented by

rp = Re 1 \|R' - B
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3.4 Pinion Machine-Tool Settings

There are five machine-tool settings m,,, En,, Ly, s,, and g, to be determined. The key to
the solution of this problem is the determination of the cutting ratio m, . Let us consider this

problem first.

3.4.1 Determination of Pinion Cutting Ratio

We will use the relations between principal curvatures and directions for the pinion cutter
surface and the pinion surface to derive the pinion cutting ratio m,,. To apply the equations
described in Section A.2, we consider that surfaces ¥; and ¥ are equivalent, and that surfaces £ p
and ¥ g are equivalent. Also, the following data are considered as given: (1) the principal curvatures
of the pinion surface at the mean contact point, &, and x, ; (2) the principal directions of the
pinion surface at the mean contact point, &, and €, ; (3) the coordinates of the mean contact
point; (4) the unit normal at the mean contact point; (5) the coefficients a,,, a,,, and a,,.

The procedure to determine m, is as follows:

STEP 1: Representation of a7

The angular velocity of the pinion is represented by

sin p,

(1)

3" = tu 0 (3.104)

cos u,

The angular velocity of the pinion cutter is represented by
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cos 6,
~(P) (1)
o

= j':mplw 0 (3105)

—siné,

Therefore, we may obtain the relative angular velocity "' as follows:

sinp, —mg, cosé,

(1)

"7 = 2w 0 (3.106)
cos p, + my, sind,
STEP 2: Representation of | Q’“P)r'ié',, ]
I

1P)

The scalar | &' fi€p, ] is represented by

+(sinp, —m, cosd ) 0 E(cosp, +m, sind,)

(1)

(1P
[ = w N y n,

ow ne

€ €

€
PI:'

Py Pr

vy z

(3.107)

= % H(nzeply - nyep, yeos b, + (n,,eply — nyep, ) sin 61} mp,

: ] ()
+ [(nye,,[x ~naep Ysinp, + (nxeply ~ Nyep, )Cos p, } w

(n
= (Cume + clz)“"'

STEP 3: Representation of | J“P)fié’,, ]
n

(1P)

The scalar [ & "'7ié} | is represented by
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+(sinp, —mp cosé,) 0  F£(cosp, +my sind)

Y ne : = W Ny Ty n.

|
| e |
i

{ €Pr, P, €rp, (3.108)
= :’t«‘((ne —nze, )sinp, + (nge, —nye, )cos Tt
= \y€py, ey, Hy =€py, verey, .“1J
3y
= Cpw
STeP 4: Representation of LS
The velocity o may be obtained by
W= 3« B
— By cos u,
(3.109)
= +w' | Bgcos i, — B,sinpy,
By sinu,
The velocity e i may be obtained by
"I—’(P’ = g7 x B+ 040, % g7
(Em £ By)siné,
(3.110)

= w my | £(L;m~ Bysind, — Bycosé,)

(Em £ By)cosé,

The sliding velocity V"' is described by
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—({1P) _ ’/;(1)

F(P)
‘ - tr - tr‘f

FBycosp, — m, (Em £ By)siné,

. (3.111)
= " | &(Bgcosp, — Bysiny,) T m, [Ly — (Bgsiné, + B, cos é, )]
tBysinp, — m,, (En £ B,)cosé,
STeP 5: Representation of V,(,;P) and VF(,;IP)
Using equations (A.33) and (3.107), we have
0, = —Kp VP — (e, mp, + ¢)w'” (3.112)
Equations (A.35) and (3.108) yield
(1
a,, = —fcan},;fP) - Cpw (3.113)
From equation (A.37) we have
;8 — A1, 0, =0 (3.114)
Using equations (3.112) - (3.114), we obtain
(1
a”KPlV’(’;P) - a“'{PnV’g;JP) =[~a,¢,mp +(ay,6, ~ay;0,,)|w (3.115)

Moreover, we know that
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(1 P) 7 — 7 —
v = viPe, + Vi, (3.116)

Considering only the z component in equations (3.111) and (3.116), we obtain

1)

1"157;?)6},[: + V,(,;Tp’epuz = [FBycosp, —m, (En = By) sinél]w( (3.117)
Considering only the - component in equations (3.111) and (3.116), we receive

. : (1)

\L;P)epj: + V}(’;,P)epn__ = [£Bysinp, —m, (E,;, £ By)cosé,|w (3.118)

Multiplying equation (3.117) by cos §, and equation (3.118) by sin §, , and adding the resulting
equations, we obtain
By cosy, (n (n

F(1P) -
Ve, = T cosb —e, s, tw (3.119)
Prre. 1 P, 1

Substituting equation (3.119) into equation (3.117), we obtain

VOR (_ €11 m an'{Pntq +a,, 6, — 4,6,

gt )u“’ = (t,mp, +t,)w (3.120)

Kp, Ay Kp;

STeEP 6: Representation of pin

The matrix form of equation (3.116) may be represented by
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V(IP) V(U’)

Pra. Pu.

~+(1P) (lP) ,v(xP)
PO = | VR e, + Vi e, (3.121)

I/ (1P1 /(”’)
Pr + 1 PH,

Substituting equations (3.119) and (3.120) into equation (3.121), we have

[ (tlmPl + tz)e}vlz + taePn

F(1P) (1) :
1% = W (txmm R )ePIy + t4epny

L (tlmPl +t2)eP +t €

I: 47Pq,

(3.122)
[ u mPl + u12
_
= W Uy Mp, + Uy,
L u mPl + u32
STEP 7: Representation of [ Aid' V"]
The scalar | At 17(”’)] may be represented by
Ng Ny n,
2
M“P)V“P)} = [wm} +(sinp, + m,, cosé,) 0 t(cos pu, + my, siné,)
ullmPl + ul? u2lmPl + u22 u31 mpl + u32
2 m1?
= (vlmp1 +uv,m, + vs) [w J
(3.123)
where
v, = £ [(u,, siné, — u,; cos §,)ny, — (n,cosé, + nzsinb, )u,,| (3.124)
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v, = F((u, cosp, + uy, sind )ng — (u,, sinp, — u,, cosé,)n,
(3.125)
— (u,, cos p, + u, sind, + u,, cos b, — u,, sin p, )ny]
v, = F[(uy,nscosp, — (u,, cosp, — u,, sinp, Jn, — u,,n, sinp,] (3.126)
STEP 8: Representation of 7 - (J“’ X tr\—}”’) -7 x t,.—;“))
The velocity t,17( i may be described by
I AR 7ol B VA (3.127)
Substituting equations (3.109) and (3.122) into equation (3.127), we have
—Uy, My, F By COSH, — Up,
~(P) (n .
WV = w —u, my, F B,sinp,  Bzcosp, — u, (3.128)

—Uy, Mg, £ By SIDH, — Uy,

(1) . f}(f’))

Vector (0 X ¢r is represented by

+[u,, m,, - (B;sinp, — Bycosp,  u,)jcosp,

-1 (P (1)

2
& X gV = [w J (Fu,, cos p, + u,, sinp, ymy, — By F u,, cos p, £ uy, sinp,

:F[uzxmm - (BZ sinpu, — By cosp, t u,, )] SIN g,
(3.129)
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(P 2y
Vector (& X 4} ') is represented by

—~(B,siny, — By cos p, Ym,, sind,

2
(P ~(1) ] .
X b = [u.‘ J —B,m,, sinvy,

—(B,sinp, — Bzcosp,)my, cosé,

Subtracting equation (3.130) from equation (3.129), we obtain

hllmPI + h12

RV L LAV 7 L [wu)]’ hym, +h,
h,ym, + h,,
where

h,, = zu, cosp, —(Bycosp, — B, siny, )siné,
h, = (B,singy, — Bycosp, £ u,,)cospy,
h,, = Bysiny, Fu,cosy, u, siny
h,, = —(Byzxu,cosp Fu,siny,)
h,, = Fu, siny, — (Bycosp, — B,sinpy, )cosé,
h, = —(B;sinp, — Bycosp, +u,,)siny,
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(3.133)
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(3.135)

(3.136)
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(1)

Therefore, we may obtain 7 - (u'i(” X ,,f'm -5 x v ) as follows:
i (0 x 77 =37 x W) = (fm, + 1) [J”Jz (3.138)
where
fi = nzh, +nyh, +n.h, (3.139)
f; = nzh, +nyh,, + n;h, (3.140)

STEP 9: Representation of m,,

Using equations (A.33), (3.107), and (3.120), the equation for a,, may be represented by

(1)

0, = - (Ko t, + 6, ) w (3.141)
Using equations (A.35), (3.108), and (3.119), a,, may be described by
(1
a,, = - (n,,"t, + cn)w (3.142)

Using equations (A.36), (3.119), (3.120), (3.123), and (3.138). the expression for a,, may be

represented by
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a,, = [(2/{P111t2 -v, = f)m,, + ('{P,t: + nPHtj - v, ~ fz)] [um]z (3.143)
From equation (A.39) we know that
a,a,, — a,,a,, =0 (3.144)
Equations (3.141)—(3.144) yield
., = _an(npjtz + nputj = vy, = f;) = (Kp, b + 0 )(Kp, 2, +¢55) (3.145)

a12(2KP,t1t2 - v, -

3.4.2 Determination of parameters £,, and L,

fi)

Parameters E,, and L,, of the pinion machine-tool settings have been shown in Figures 12

and 13. Since the pinion cutting ratio m,, has been determined, it is very easy to find these two

parameters. We may determine vector 7" from equation (3.122). Applying equation {3.111),

then, we obtain

1P
_ FBycosp, - V,f )
mp, siné,

E.. F By

Bycosu, — B,sinp, F V;lp)
Ly = —

+ Bzsiné, + B, cosé,

mPl
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3.4.3 Determination of Pinion Radial Setting and Cradle Angle

The determination of the pinion radial setting and the cradle angle is based on the consideration
that the position vectors of the pinion tooth surface and head-cutter surface must coincide at the
mean contact point. Equation (3.96) describes the mean contact point B in the S,,r) coordinate

system. Considering the y and z components in equation (3.96), we obtain

8]
2
L
I

- ny FEn (3.148)

Bm(p) = sz sin 61 + Bf: cos (51 - L (3.149)

For a straight-edged cutter, by using equations (2.38), (3.148), and (3.149), we have

spsing, = xB; + En fugsing,sint, (3.150)

spcosq, = By sind + By cosbd — Ly — u,sinyg,cos7, (3.151)

For a curved-edged cutter, by using equations (2.40), (3.148), and (3.149), we have

cos A, sinT,

]

8, sing, By + En t (3.152)

KPI

A
s,cosq, = By siné + By cosé, — Ly, £ kel Aad s 2 (3.153)

KPI

§0




Using sin’ gp + cos’ g = 1, we eliminate g, and solve for pinion radius s,. Eliminating s,, we

may determine the pinion cradle angle g,.




CHAPTER 4
CONCLUSION

As it was mentioned in Chapter 1, the reduction of transmission errors of spiral bevel gears
is a difficult problem. Although it is possible to generate conjugate spiral bevel gears, with zero
transmission errors, we have to take into account that the gear are very sensitive to misalignment.
Using the TCA programs we have found that even a small misalignment of gears results in discon-
tinuity of functions of transmission errors that is accompanied with the jump of the function at the
transfer points. Thus the idea of gears with non-zero transmission has to be complemented with
the modification of the process for their generation that allows to reduce the sensitivity of gears to
their misalignment.

From the result of computation by TCA programs we know that gear misalignment causes
a linear or almost linear function of transmission errors. Litvin has discovered that a sum of a
parabolic function and a linear function represents again a parabolic function that is just translated
with respect to the initial parabolic function. Then, if a parabolic function is predesigned, it
becomes possible to keep the same level of transmission errors for aligned as well as misaligned
gears.

Gear misalignment is also accompanied with the shift of *he bearing contact to the edge of gear
tooth surface. To keep the shift of bearing contact in reasonable lirnits, it is necessary to limit the
tolerances for gear misalignment and the respective value of predesigned parabolic function.

In Chapter 2 the basic concept and methods of Gleason systems have been presented. Equations

that describe the surface of the head cutter, which is either a cone surface or a surface of revolution,
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have been derived. These equations covers the determination of position vectors, surface unit normal
vectors, principal curvatures, and principal directions.

Mathematical models for geometry of spiral bevel gears have been also proposed in Chapter 2.
The gear surface is represented as an envelope of the family of the tool surfaces. The tool surface
and being generated gear surface are considered conjugate ones. Based on the gecmetric properties
of conjugate surfaces, the equation of meshing has been derived.

The determination of pinion machine-tool settings is based on the method of local synthesis.
The first derivative of gear ratio, the tangent to the contact path, and the dimensions of the contact
ellipse of the gear surface at the mean contact point are considered as input to local synthesis. Thus
the level of transmission errors and the bearing contact are under control. It provides the optimal
conditions of meshing for the gear surfaces being in meshing at, and within the neighborhood of,
the mean contact point.

Equations that determine the principal curvatures and directions at the mean contact point on
the pinion surface have been derived. They are functions of the principal curvatures and directions
at the mean contact point on the gear surface and the input of local synthesis. Based on the
information on the characteristics of the pinion surface of the zero (position), first (normal), and
second (principal curvatures and directions) orders, equations that determine the pinion basic
machine-tool settings have been derived.

In Appendix A the basic concept and methods of theory of gearing that have been used in this
work have been presented. Numerical examples are given in Appendix B. These examples include
determination of machine-tool settings and results of computation by TCA programs. Computer
programs have been developed, that include machine-tool settings and TCA. They are listed in
Appendix C. The computer programs cover determination of machine-tool settings for straight-
lined as well as curved blades. The developed TCA programs allow to simuiate the meshing of

aligned and misaligned gears.
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APPENDIX A

GEOMETRY AND KINEMATICS OF GEARS IN THREE DIMENSIONS

A.1 Concept of Surfaces!

Most of the ideas underlying gear theory are based on strict definitions proposed in the field
of differential geometry. In what follows we introduce the concept that is applied in this report.

All in all we require that our functions can be differentiated at least once and usually more times.
Accordingly we say a function F belongs to class C™ on an interval T if the nth order derivative
of F exists and is coutinuous on Z. In addition, we denote the class of continuous functions by C°.

A parametric representation of a surface ¥ is a continuous mapping of an open rectangle R,

given in the plane P of the parameters (u,v), onto a three-dimensional space E® such that

B(u,v) € C°, (w,v) € R (A.1)

where B is the position vector which determines the point surface (Figure 21). The vector func-

tion B(u,v) may be represented by

B(u,v) = Bz(u,%) 7+ By(u,v) 7+ B.(u,0) k (A.2)

! Adopted from the manuscript of the book “Theory of Gearing” by Litvin, in press by NASA.
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Surface &

Figure 21: A parametric representation of a surface.
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where 7, j, and £ are unit vectors of the coordinate axes.

We call a surface point B(u,1) a regular point if at this point

B, x B, #0 (A.3)

where
. 8B . OB
Bu=%g Be=7y

A surface is called a regular one if each point on it is a regular point.

A regular surface has the following properties:

o It is at least class of C1.

e There is a one-to-one correspondence between the points of plane P (of the parameters (u, v))

and the three-dimensional space E3.

o A regular surface has a tangent plane at all its points.

The normal vector N to the surface at a point B is

N=5B,xB, (A.4)
and its unit normal is represented by
N _ B,xB,
= —_— = Bi X s (A5)
[N u X By
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The direction of the surface normal N and unit normal 71, with respect to the surface, depends on
the order of the factors of the cross product (equation (A.4)). By changing the order of the factors,
we may change the direction of the normal to the opposite direction.

A surface is uniquely determined by certain local invariant quantities called the first and second

fundamental forms. The first fundamental form of a surface is defined by

I = dB-dB = (Eudu+éudv)-(§udu+g,,dv)

= (B, B.)dv +2(B, - B,)du’ dv’ + (B, - B,)dv’ (A.6)

= Edu +2Fdudv+ Gdd’

where we set

The second fundamental form is

II = —dB.di —(B, du + B, dv) - (7, du + @, dv)

= —(B, @y)du’ — (B, -, + B, - fi,)dudv — (B, - fi,)dv’ (A.7)

Ldu' +2Mdudv+ Ndv

where we have

1 - B
L =-B, 7, M:—i(Bu-ﬁv+Bv-fiu), N=-B, 1,

The second fundamental form exists only if the surface is at least class C2. In this report we will

consider all the gear tooth surfaces as regular surfaces with class at least C2.
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On a given surface various curves pass through a common point B and have the same unit
tangent vector 7 at B (Figure 22). One of these curves (designated by Lo) is located on the
plane P, which is drawn through the unit tangent vector ¥ and the surface unit normal #i. The
curvature of curve Lo is called normal curvature. Since the unit tangent vector 7 of the surface
may have different directions on the surface, for each direction there is a normal curvature. The

normal curvature is a function of the first and second fundamental forms:

I Ldd +2Mdudv+ Ndv'
I = Edu® 4+ 2F dudv + G dv*

Knp =

(A.8)

The extreme value of the normal curvature taken at a certain point of the surface are called the
principal curvatures. The directions of the normal sections of the surface with the extreme normal

curvatures are called the principal directions. Equation (A.8) yields

F = kn(Edu + 2F dudv+ Gdv') - (Ldu’ +2M dudv+ Ndv') =0 (A.9)

For a given point on the surface, E, F, G, L, M, and N are constant. The normal curvature x,,
is a function of the ratio du and dv. Therefore, equation (A.9) is an identity of du and dv. From

calculus, the partial derivative

= =0 (A.10)

Substituting equation (A.9) into equation (A.10), it yields

Oknp

Odu

kn(Edu+ Fdv) - (Ldu+ Mdv) + ——(Edu’ + 2F dudv+ Gdv' ) =0 (A.11)

88




Figure 22: The normal curvature.
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Also, the partial derivative

-0 (A.12)

Substituting equatior (A.9) into equation (A.12), it yields

Okn

kn(Fdu+ Gdv) — (Mdu+ Ndv)+ T

Edu +2Fdudv+ Gdv' =0 (A.13)

Recall that the principal curvatures are the extreme values of the normal curvature k,. Thus

0Ky /8 du = 0 and Ok, /3 dv = 0 if &, is the principal curvature. Equations (A.11) and (A.13) yield

(knE — L)du + (knF - M)dv =0 (A.14)

and

(KnF = M)du + (5,G ~ N)dv = 0, (A.15)

respectively. Solving the homogeneous system of equation (A.14) and (A.15) by eliminating du

and dv, we obtain

(EG - F')k. = (EN = 2FM + GL)kn + (LN = M') =0 (A.16)

The discriminant of equation (A.16) is




(EN —2FM + GL) — 4(EG ~ F)(LN - M")

(EN -GL)- 3 (BM - FL)]2 + 4—UiGE;—I'ﬁ(EM - FLY’

>
f

(A.17)

i

Equation (A.17) shows that the discriminant is greater than or equal to zero. Thus the equation
has either two distinct real roots—the principal curvatures at a nonumbilical point, or a single real
root with multiplicity two—the curvature at an umbilical point. The discriminant is equal to zero

if and only if

EN-GL=EM-FL=0 (A.18)

Since E # 0 and G # 0, equation (A.18) can be shown to be identically :qual to

L M N
—_— T e— = — = R .
F-F-C (A.19)
Considering equations (A.8) and (A.19), we obtain
Kn = N (A.20)

This means that the principal curvature is the same as the normal curvature at any direction.
Thus each direction may be considered as a principal direction. Any point which is on a plane or
at which a surface turns into a plane? is an umbilical point. Any point on a spherical surface® is
also an umbilical point.

Two distinct principal curvatures can always be obtained at a nonumbilical point. These two

curvatures correspond to two distinct principal directions. By canceling x, from equations (A.14)

2The normal curvature on each direction is zero.
*The normal curvature on each direction is the inverse of the radius.
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and (A.15), we have the following equation for principal directions

(EM - FL)du' - (GL — EN)dudv + (FN ~ GM)dv' =0 (A.21)

The discriminant of the above equation is identical to equation (A.17). At a nonumbilical point
equation {A.21) can be represented as a product of two co-factors (A; du + B;dv)(i = 1,2) since
the discriminant is larger than zero. This means that it represents two perpendicular directions.
Thus we may conclude that at a nonumbilical point there exist two distinct principal curvatures in
two perpendicular directions.

After representing of E, F, G, L, M, and N in the form of B,, B,, i, and 7i, by equations (A.6)

and (A.7), equations (A.14) and (A.15) will yield

By (kndB +dt) = 0 (A.22)

B, (k.dB +dit) =0 (A.23)
Obviously,

fi - (kndB +dii)) =0 (A.24)

Therefore, k,, dB + dfi is a zero vector since it is orthogonal to Eu, B,, and 7. In short, we have

dii = -k, dB (A.25)
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The above equation, which completely characterizes the principal curvatures and directions, is
called Rodrigues’ formula. This formula simplifies the calculations to obtain principal curvatures

and principal directions. The matrix form of Rodrigues’ formula is

r Ong ong . r 0B; 0B, 7
E——du—f—a—v—dv Edu%‘%dv
on, on, 0B, dB,
ony ¥ - Yy it A .26
5 du + 5y dv Kyg 5u du + 30 dv ( )
on, on, 0B, 0B,

N du + Ee dv_ _ng—du%- 3y va

Matrix equation (A.26) yields three scalar equations in three unknowns, the ratio du/dv, and the
principal curvatures «, and ;. Using any two of the scalar equations we may develop a quadratic
equation (provided dv # 0)

2

d d
4, (;ﬁ) FAT A =0 (A.27)

The two roots of this equation correspond to two principal directions on the surface. By putting
both roots into the third scalar equation, we may determine the principal curvatures «, and «,.
It is possible to have either positive or negative principal curvatures. The sense of the principal
curvature depends on the location of the center of curvature on the normal. The principal curvatwre
is positive if the center of curvature is located on the positive normal.
The normal curvature on each direction may be expressed in terms of principal curvatures. This

is so called Euler’s Theorem. That states

Kn = K; cos @ + K sin” @ (A.28)

where @ is the angle formed by the tangent to the normal curvature and principal direction with

curvature K.
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A.2 Relations Between Principal Curvatures and Directions for Mating Surfaces

Consider two gear surfaces £ and Xg which are in meshing. Moreover, we have the following

assumptions:
1. The rotation angles, ¢, and ¢, of both gears are given;
2. The function ¢,(¢,) has continuous derivatives of second order;
3. The angular velocity W of gear F is constant.

Then relations between principal curvatures and directions of these mating surfaces may be deter-
mined. Such relations were first proposed by Litvin [12] and then extended for the case m_, #0
by Litvin and Gutman (3], where m,, = w(ﬂ/w(g) is the gear ratio.

Q

The relations may be expressed by a system of three linear equations in two unknowns ,.Véf)

()
7 .
and Vg,

~F)

(F .
a, Vo, +a, Very =a, (j=1,2,3) (A.29)

where ,Vé;:) and ,Vé;) are the projections of the relative velocity ,17'(;) at the contact point B on

the principal directions on surface ¥ . The equation may be represented by a symmetric augmented

matrix [A]. That is

[A]: 0y GOy Gy (A'30)

Here
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K

K

1

Qe

11

13

22

and &,

and Kop

2 2 Ke + K, Ky — K,
- : —_ I I I I
K - —_ - < —_ —
oy — Kz, COS 0 — K, sin o Ko, > 2 cos 20
K, —K
F F .
a,, = —+—sin2o
2
(FQ (FQ) .
— — g ra =
a31 - hQI Q; [ eQ]]
2 2 Ke + Ky Ky — Ky
. H - 1 17 I IT
K - K - K = — —
on P £y COS O Koy 5 cos 20
(FQ) (FQ) _ .
— s 15 )
a32 - KQH Qrr [ eQHJ
(FQ\’ (Faly (FQ 3(FQ)
x } . la—
Q <‘Q; ) + hQu (‘/Qn ) [nw 4 ]
2
- (A —~(Q) (9 (5 (A ' - T 3
—-n (u) oV - ng ) + (w ) or n X kQ) (B - OQO}-)

are the principal curvatures at the contact point B of gear F,

are the principal curvatures at the contact point B of gear Q,

(A.31)

(A.32)

(A.33)

(A.34)

(A.35)

(A.36)

€,, and € o, 8Te the unit vectors of the principal directions at the contact point B of gear @,
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o is the angle measured counterclockwise from €, , the unit vector of the principal direction at

the contact point B of gear F, to 591’

37 and &'? are the angular velocities of gears F and Q, respectively,
79 is the relative angular velocity of gear F with respective to gear Q,

7 is the common unit normal vector,

779 is the relative velocity of the contact point on gear F with respect to the same contact

point on gear Q,

AFQ AFQ) L 2(FQ _
‘ and V are the projections of V' ' on the ¢
Qr e Q

A
trl'

1

and € Py respectively,

and t,V(Q’ are the transfer velocities of contact point B on gear F and gear Q, respectively,
B is the position vector of the common contact point B,

0,0 is the position vector from O, to O,

k

o is the unit vector of the axis of rotation of gear @, and

m, . is the derivative of the rotation ratio of gear Q to gear F. It is represented as

. d

Myr = do, mqr((br)
where ¢, is the rotation angle of gear F, and
e
Mor(95) = o

Totally, there are two cases of tangency of gear tooth surfaces:

1. The surfaces X, and £, are in line contact and B is just a point of the instantaneous line of

contact.
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2. The surface. 2, and ¥, are in point contact and B is the single point of tangency at the

considered instant.

In the case of line contact of mating surfaces, the rank of matrix [4] is equal to one. Thus all

determinants of the second order formed from the elements of [A] are zero. This yields

P - (A.37)
al2 a22 a23
- % e (A.38)
al3 a23 a:}J
Yo le e (A.39)
a13 a23 a33
Using equations (A.31)-(A.39) we obtain
2

tan2o = — > 199 (A.40)

@, — a4, T (KQI ~Ray )as,

2 2
a,, ~a, +(ky — kg )a
Q oy /%3
Ky — K, =21 . = (A.41)
7 i€ a,, cos 20

2 2
a.+a
= (Kg, + Ko, ) — 2 (A.42)

Ky + K
! a33

Fu

For the case when surfaces L and £ are in point contact, the rank of matrix [A] described

by equation (A.30) is two. Consequently,
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@y Gy @y (=0 (A.43)
a31 a32 al.’!
Equation (A.43) yields the relation
flhz Ky Ko, Ko ,0) =0 (A.44)

In general, equations of the generated surface are evidently much more complicated than those
of the generating one. Therefore, a direct way to obtain the principal curvatures and directions of
the generated surface is a very difficult task. This work can be significantly simplified if we apply
the relations, described in this section, between principal curvatures and directions of meshing

surfaces.

A.3 Relative Normal Curvature

The relative normal curvature, k., of two mating surface, £¥r and ¥g, at the contact point B
is defined as the difference of the normal curvatures of both surfaces taken in a common normal

section of surfaces and represented as

Kp = n(nQ) - &(:) (A.45)

—

Suppose the common normal section form an angle @ with the unit vector €, and an angle (w+

o) with the unit vector €, (Figure 23). According to Euler’s Theorem (equation (A.28)), we obtain

KLQ) = Ko, cos @ + Kon sin’ @ fc(:) = Ky, cos2(w +0)+ K, sinz(w + o) (A.46)
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Figure 23: A tangent plane to a surface
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Substituting equation (A.46) into (A.45), after simple transformations we get

2 .2 2 . 2 . 2
K, = (Kg, — Ky €OS 00— K, sin g)cos @+ (Kg, — Ky SN 00— Ky COs ?0)sin’ @

. (A.47)
+ E(K}.I - Kz, )sin20sin 2w

Equation (A.47) and expressions for a,,, a,,, and a,, in equations (A.31), (A.32), and (A.34) yield

1 .
Ky = 5 la,, + a,, + (a,, — a,,)cos2w] + a,, sin2w@ (A.48)

The extreme values of function k,(w) may be determined by

d
—(Ky) = A4
I (k) =0 (A.49)
Thus we obtain
tan2m = — 22 _ (A.50)
a a

11 - Y22

This equation has two solutions @, and =,. Moreover, |, ~ w,| = 7/2. This means that there are
two perpendicular directions for the extreme relative normal curvatures. Using equations (A.48)

and (A.50) the extreme values of the relative normal curvatures are represented by

1
K= 3 [ 0, +ay,) £ y/(ay, — a,) + 40, (A.51)

We may determine whether or not two surfaces interfere each other by the concept of relative

normal curvatures. If two surfaces contact at a point with any interference, the sign of the relative
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normal curvature in each direction must remain the same. In other words, the product of two
extreme values of the relative normal curvatures is positive. Equations discussed in this section

were first proposed by Litvin [9].

A.4 Contact Ellipse

In theory the tooth surfaces of a pair of spiral bevel gears are in contact at a single point at
every instant. In practice the surface of the solids is deformed elastically over a region surrounding
the initial point of contact, thereby bring the two bodies into contact over a small area in thc
neighborhood of the initial contact point [13, 14]. Such an area is an ellipse whose center of
symmetry is the theoretical point of contact and the dimensions depend on the elastic approach
and principal curvatures and directions of the contacting surfaces. If the approach of surfaces under
the action of load is given, the size and orientation of the contact ellipse can be defined as a result
of a geometric solution. Litvin[9, 15] has investigated the mathematical modeling of the contact
ellipse.

Let us now consider that two surfaces £; and I, are contact at a single point B. The principal
curvatures, &, and Ky of ¥; and Ky, and Kap of ¥y, at point B are known. Also known are unit
vectors €, and €, ;> Which are directed along the principal directions of £, at point B, and €,
and €, , which are directed along the principal directions of T2 at point B. Unit vectors €, and €,
determine the tangent plane (Figure 24). Angle o,,, which is measured counterclockwise from ¢,
to €,,, is also determined since €, and €, have already been known. Then the contact ellipse may

be described as

[N
~

™

(A.52)

8,
+
)=
I
ot

in which ¢ and 7 are coordinates with respect to the ¢ and n axes with origin at the contact point B.

The lengths of semiaxes a and b are
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B b 7

Figure 24: Contact ellipse on the tangent plane.
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£ £
= . /1= b=./|= AS
“=ylab B (4-53)
where ¢ is the approach, and
1
A= 1 ("m - Kyp — \/;fA — 2K, K,, COS20,, + K;A) (A.54)
1
B= n <Km - Kyp + \/x—fA — 2K, , K,, COS20,, + K:A) (A.55)
where
Kip = Ky, + Ky, Ko = Ky, + Kop (A.56)
Kia = Ky~ R Kaa = Koy = Koy (A.57)
The angle o, which determines the orientation of the ellipse may be obtained by equations
cos 2a, = Kia ~ Kza 0520, - (A.58)
\ﬁc:A ~ 2K, , Ky COS20,, + K,
and
2«,, sin 20,, (A.59)

sin2a, =
' k® ~2k,.K,, cO520,, + K
1a 1a V24 12 28
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Finally

sin 2a,

1+ cos2a, (4.60)

a, = arctan

Note that the angle a, is measured counterclockwise from the 7 axis to the unit vector €, .

Since

1
2
A? - B = Z(xm - nm)\/nz — 2K, Ky, COS 20, + niA

18

the semimajor axis of the contact ellipse may be determined by the following conditions:

¢ The length of the semimajor axis, which is along the n axis, is b

if k5 > K,y or [A] > |B].

e The length of the semimajor axis, which is along the { axis, is a

lfK”: > K

or |B| > | Al

2%
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APPENDIX B
NUMERICAL EXAMPLES

In this section, we will use the synthesis method discussed in Chapter 3 to determine the
machine-tool settings for a pair of spiral bevel gear drive, and then we will use the TCA to simulate
the meshing of this pair under alignment and misalignment conditions. Two cases are considered
here. Both cases use straight blades to cut gears, but for the pinion, case 1 uses straight blades,
and case 2 uses curved blades.

The major blank data is represented in Table 2. Table 3 shows the input for case 1, and Table 4
shows the input for case 2. The output for the gear machine-tool settings is shown in Table 5,
which is the same for both cases. For the pinion machine-tool settings, case 1 is shown in Table 6,
and case 2 is shown in Table 7.

Two conditions of misalignment are considered when the TCA is applied to simulate the mesh-
ing. They are the shift of pinion along its axis, which is denoted by A A, and the error of pinion
shaft offset, which denoted by AV. We consider that AA is positive when the mounting distance
of pinion is increased. The sense of AV is the same as y, shown in Figure 18. The output of the
TCA is shown from Figure 25 to Figure 34 for case 1, and from Figure 35 to Figure 44 for case 2,

respectively.
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Table 2: BLANK DATA.

Pinion Gear
Number of Teeth 10 41
Diametral Pitch ' 5.559
Shaft Angle 90°
Mean Cone Distance 3.226
Outer Cone Distance 3.796
Whole Depth 0.335
Working Depth 0.302
Clearance 0.033
Face Width 1.139
Root Cone Angle 12°1 72°25'
Mean Spiral Angle — 35°
Hand of Spiral R.H. L.H.

Table 3: INPUT DATA FOR CASE 1.

Gear Convex Side J Gear Concave Side

Gear Blade Angle 20°

Gear Cutter Average Diameter 6

Gear Cutter Point Width 0.08

First Derivative of Gear Ratio -0.0035 0.0052

Semimajor Axis of Contact Ellipse 0.17 0.181

Contact Path Direction Angle 90° 75°
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Table 4: INPUT DATA FOR CASE 2.

Gear Convex Side ] Gear Concave Side
Gear Blade Angle 20°
Gear Cutter Average Diameter 6
Gear Cutter Point Width 0.08
First Derivative of Gear Ratio -0.0037 0.0055
Semimajor Axis of Contact Ellipse 0.171 0.171
Contact Path Direction Angle 90° 75°
Radius of Blade 40. 50.

Table 5: GEAR MACHINE-TOOL SETTINGS.

Radial 2.87798

Cradie Angle 58.6365

Ratio of Roll 0.973748
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Table 6: PINION MACHINE-TOOL SETTINGS WITH STRAIGHT BLADE.

Pinion Concave Side

Pinion Convex Side

Blade Angle 16.5561° 22.9907°
Tip Radius of Cutter 2.96469 3.07037
Radial 2.99331 2.69783
Cradle Angle 63.1869° 54.1910°
Ratio of Roll 0.22900 0.25348
Machining Offset 0.17404 -0.24459
Machine Center to Back + 0.021231 0.052118

Sliding Base

Table 7: PINION MACHINE-TOOL SETTINGS WITH CURVED BLADE.

Pinion Concave Side

Pinion Convex Side

Blade Angle 16.5561° 22.9907°
Blade Center (11.557, 0., -35.309) (19.685, 0., 49.006)
Tip Radius of Cutter 2.98467 3.04386
Radial 2.95578 2.74261
Cradle Angle 63.0025° 54.0900°
Ratio of Roll 0.23157 0.24915
Machining Offset 0.12042 -0.18825
Machine Center to Back + 0.01690 0.03605
Sliding Base
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Figure 25: Straight-edged blade, gear convex side, alignment.
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Figure 26: Straight-edged blade, gear convex side, AA = +0.002 inches.
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Figure 27: Straight-edged blade, gear convex side, AA = —0.002 inches.
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Figure 28: Straight-edged blade, gear convex side, AV = +0.002 inches.
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Figure 29: Straight-edged blade, gear convex side, AV = —0.002 inches.
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Figure 30: Straight-edged blade, gear concave side, alignment.
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Figure 31: Straight-edged blade, gear concave side, AA = +0.002 inches.
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Figure 32: Straight-edged blade, gear concave side, AA = —0.002 inches.
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Figure 33: Straight-edged blade, ge:alr1 ;:oncave side, AV = +0.002 inches.
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Figure 34: Straight-edged blade, gear concave side, AV = ~0.002 inches.
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Figure 35: Curved-edged blade, gear convex side, alignment.
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Figure 37: Curved-edged blade, gear convex side, AA = ~0.002 inches.
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Figure 38: Curved-edged blade, gear convex side, AV = +0.002 inches.
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Figure 39: Curved-edged blade, gear convex side, AV = —0.002 inches.
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Figure 40: Curved-edged blade, gear concave side, alignment.
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Figure 41: Curved-edged blade, gear concave side, DA = +0.002 inches.
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Figure 42: Curved-edged blade, gear concave side, AA = —0.002 inches.
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Figure 43: Curved-edged blade, gear concave side, AV = +0.002 inches.
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Figure 44: Curved-edged blade, gear concave side, AV = ~0.002 inches.
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APPENDIX C

LISTING OF COMPUTER PROGRAMS
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Gleason's Spiral Bevel Gears

Basic Machine-Tool Settings and Tooth Contact Analysis

¥ N ¥ % % %

Straight Blade to Cut the Pinion
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IMPLICIT REAL*8(A-H,K,M-2)

REAL*8 X(1),F(1),FI(1),PAR(6),LM,TX(5),TF(5),TF1(5),TPAR(19),
AZSP(1,1) ,WORKP(1),42S(5,5) ,WORK(5)

CHARACTER*8 HG,HNGR

DIMENSION IPVTP(1),IPVT(5)

EXTERNAL PCN,TCN

COMMON/P1/PAR

COMMON/T1/TPAR

COMMON/AO/HG

COMMON/Al/pll,p12,pl3,p21,p22,p23,p31,p32,p33,p!,p2,p3

COMMON/A2/SG,CSRT2,QG, SNPSIG,CSPSIG

COMMON/A3/TND1, TND2,RITAG

COMMON/A4/CSD2,SND2,CSPIT2,SNPIT2

COMMON/A5/CSQG, SNQG, THETAG

COMMON/B1/CSPH11,SNPH11,SP,EM,LM,CSRT1,CSD1,SND1,CSPSIP,SNPSIP

COMMON/B2/CSPIT1,SNPIT1,MP1,MG2,QP

COMMON/B3/B2£fx,B2fy,B2f2

COMMON/B4/CSPH2,SNPH2,CSPH21, SNPH21

COMMON/C1/UG, CSTAUG, SNTAUG

COMMON/C2/N2£fx,N2fy,N2£f2z

COMMON/D1/UP,CSTAUP, SNTAUP

COMMON/E1/XBf,YBf,ZBf

COMMON/F1/PHIGO

COMMON/G1/DAl,DV1

* INPUT THE DESIGN DATA

*

* TN1

*

: number of pinion teeth
----- sec. 3.1
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M % % % N % ok % % % % o % %

% % ok ok X ¥ % % ¥ W ¥ ¥ % ¥ X ¥

TN2

RTldg, RTlmin

RT2dg, RT2min

SHAFdg
BETAdg
ADIA
W

A
ALPHdg

DLTXdg

DLTVdg

M21XPR

M21VPR

AXILX

AXILV

HNGR
DA
DV
DEF

EPS

.o .

s oo

number of gear teeth

----- sec, 3.1

root angle of pinion (degree and arc minute, respec-
tively)

----- sec. 3.1

root angle of gear (degree and arc minute, respec—
tively)

----- sec. 3.1

shaft angle (degree)

----- sec. 3.1

mean spiral angle (degree)

————— sec. 3.1

average gear cutter diameter

----- sec, 3.1

point width of gear cutter

----- sec. 3.1

mean cone distance

————— sec, 3.1

blade angle of gear cutter (degree)

----- sec., 3.1

angle measured counterclockwise from root of gear to
the tangent of the contact path (degree)
gear convex side

----- fig. 19

angle measured counterclockwise from root of gear to
the tangent of the contact path (degree)
gear concave side

----- fig. 19

first derivative of gear ratio

gear convex side

----- sec. 3.1.1

first derivative of gear ratio

gear concave side

----- sec. 3.1.1

semimajor axis of contact ellipse

gear convex side

----- eq. (3.76)

semimajor axis of contact ellipse

gear concave side

----- eq. (3.76)

hand of gear ('L' or 'R')

amount of shift along pinion axis

+ : pinion mounting distance being increased
- : pinion mounting distance being decreased
amount of pinion shaft offset

the same sense as yf shown in fig. 18
elastic approach

----- eq. (3.76)

amount to control calculation accuracy

OUTPUT OF THE BASIC MACHINE-TOOL SETTINGS

PS1Gdg

gear blade angle
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b

*

*

PSIPdg ¢ pinion blade angle

RG : tip radius of gear cutter
RP ¢ tip radius of pinion cutter
SG ¢ gear radial

SP : pinion radial

QGdg ¢ gear cradle angle

QPdg : pinion cradle angle

MG2 ¢ gear cutting ratio

MP1 : pPinion cutting ratio

EM ¢ machining offset

LM : machine center to back + sliding base

DATA TN1,TN2/10.D00,41.D00/
DATA RTldg,RTlmin/12.D00,1.D00/

DATA RT2dg,RT2min/72.D00,25.D00/
DATA SHAFdg,BETAdg/90.D00,35.D00/

DATA ADIA/6.0D00/
DATA W/0.08D00/

DATA A/3.226D00/
DATA ALPHdg/20.D00/
DATA DLTXdg/ 90.D00Q/
DATA DLTVdg/ 75.D00/
DATA M21XPR/-3.5D-03/
DATA M21VPR/5.2D-03/
DATA AXILX/0.1710D00/
DATA AXILV/0.1810D00/
DATA HNGR/'L'/

DATA DV,DA/0.D00,0.D00/
DATA DEF/0.00025D00/
DATA EPS/1.D-12/

DA1l=DA
DV1=DV
HG=HNGR

hd )

CONVERT DEGREES TO RADIANS

CNST=4.D00*DATAN (1.D00) /180.D00Q
RITAG=90.DOO*CNST
DLTX=DLTXdg*CNST
DLTV=DLTVdg*CNST
RT1=(RT1ldg+RT1lmin/60.D00Q) *CNST
RT2=(RT2dg+RT2min/60.D00) *CNST
BETA=BETAdg*CNST
PSIG=ALPHdg*CNST
SHAFT=SHAFdg*CNST

CSRT2=DCOS (RT2)
SNRT2=DSIN(RT2)
CSRT1=DCOS(RT1)
SNRT1=DSIN(RT1)
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* CALCULATE PITCH ANGLES

%*

MM21=TN1/TN2

c —-——- eq. (3.1)
PITCH2=DATAN (DSIN (SHAFT) / (MM21+DCOS (SHAFT)))
IF(PITCH2 .LT. 0.D00) THEN

PITCH2=PITCH2+180.D00
END IF
CSPIT2=DCOS (PITCH2)
SNPIT2=DSIN(PITCH2)

c --——= eq. (3.2)
PITCH1=SHAFT-PITCH2
CSPIT1=DCOS (PITCH1)
SNPIT1=DSIN(PITCH1)

* CALCULATE DEDENDUM ANGLES

c ————- eq. (3.3)
D1=PITCH1-RTl
D2=PITCH2-RT2
CSD1=pCOS (D1)
SND1=DSIN(D1)
TND1=SND1/CSD1
CSD2=DC0S (D2)
SND2=DSIN (D2)
TND2=SND2/CSD2

*

CALCULATE GEAR CUTTING RATIO

----- eq. (3.7)
MG2=DSIN(PITCH2)/CSD2

[¢]

* FOR GEAR CONVEX SIDE I = 1, FOR GEAR CONCAVE SIDE I = 2.
*
DO 99999 I=1,2
IF(I .EQ. 1) THEN
WRITE(72,*) 'GEAR CONVEX SIDE'
DLTA=DLTX
M21PRM=M21XPR
AXIL=AXILX
ELSE
WRITE(72,*) 'GEAR CONCAVE SIDE'
DLTA=DLTV
M21PRM=M21VPR
AXIL=AXILV
END IF
WRITE (72,%)
c ~——~—- eq. (3.76)
AXIA=DEF/ (AXIL*AXIL)

* CALCULATE GEAR BLADE ANGLE
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IF(I .EQ. 2)THEN
PSIG=180.D00*CNST-PSIG
END IF

CSPSIG=DCOS (PSIG)
SNPSIG=DSIN (PSIG)

CTPSIG=CSPSIG/SNPSIG

*

CALCULATE CUTTER TIP RADIUS

----- eq. (3.8)
IF(I .EQ. 1)THEN
RG=(ADIA-W) /2.D0O0
ELSE
RG= (ADIA+W) /2.D00
END IF

0

*

CALCULATE RADIAL

----- eq. (3.9)
IF(I .EQ. 1)THEN
SG=DSQRT (ADIA*ADIA/4.DOO+A*A*CSD2*CSD2-A*ADIA*CSD2*DSIN(BETA))

(4]

*

CALCULATE CRADLE ANGLE

————— eq. (3.10) ,
QG=DACOS ( (A*A*CSD2*CSD2+SG*SG-ADIA*ADIA/4.D00) / (2.D00*A*SG*CSD2) )
CSQG=DCOS (QG)

SNQG=DSIN (QG)
END IF

[¢]

PAR (1) =RG*CTPSIG*CSPSIG
PAR (4) =RG*CTPSIG

*

CALCULATE PHIG

PHIG=0.D00
PHIGO=PHIG
CSPHIG=DCOS (PHIG)
SNPHIG=DSIN (PHIG)

I1F (HG .EQ. 'L') THEN
IF(I .EQ. 1)THEN

* Mmc=Mms*Msc

c ~———- eq. (2.26)

CALL COMBI(m11,m12,m13,m21,m22,m23,m31,m32,m33,m1,m2,m3,
1.D00,0.000,0.D00,0.D00,CSPHIG, SNPHIG, 0.D00,-SNPHIG,CSPHIG,
0.D00,0.D00,0.D00,
1.D00,0.D00,0.D00, 0.D00, CSQG, -SNQG, 0.D00, SNQG, CSQG,
0.D00,-SG*SNQG, SG*CSQG)

END IF
* Mpc=Mpm*Mmc
c ———-- eqs. (2.25), (3.13)

CALL COMBI(pll,pl2,pl13,p21,p22,p23,p31,p32,p33,p1,p2,p3,
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[¢]

b S

*

Csp2,0.000,-SND2,0.D00,1.D00,0.D00,SND2,0.D00,CSD2,
0.D00,0.D00,0.D00,
mll,mi2,m13,m21,m22,m23,m31,m32,m33,ml,m2,m3)

ELSE

IF(I .EQ. 1)THEN

Mmc=Mms*Msc
————— eq. (2.26)

CALL COMBI (m11,m12,m13,m21,m22,m23,m31,m32,m33,ml,m2,m3,
1.DO0,0.DO0,0.DO0,0.DOO,CSPHIG,'SNPHIG,O.DOO,SNPHIG,CSPHIG,
0.D00,0.D00,0.D00,
1.D00,0.D00,0.D00, 0.D00,CSQG, SNQG, 0.D00,-SNQG, CSQG,
0.D00, SG*SNQG, SG*CSQG)

END IF

Mpc=Mpm*Mmc
----- eqs. (2.25), (3.13)

CALL COMBI(pll,pl2,pl3,p21,p22,p23,p31,p32,p33,pl,p2,p3,
€csp2,0.D00,~SND2,0.D00, 1.D00,0.D00, SND2,0.D00,CSD2,
0.D00,0.D00,0.D00,
mil,ml2,m13,m2]1,m22,m23,m31,m32,m33,ml,m2,m3)

END IF

DETERMINE MAIN CONTACT POINT

CALCULATE THETAG

X (1) represents THETAG
PAR (2)=(MG2-SNRT2) *CSPSIG
IF(HG .EQ. 'L') THEN

PAR (3) =-SNQG*CSRT2*SNPSIG

step 1 in sec. 3.2

X (1) =QG-BETA+RITAG
ELSE

PAR (3) =SNQG*CSRT2*SNPSIG

step 1 in sec. 3.2
X (1) =- (QG-BETA+RITAG)

END IF

CALL NONLIN(PCN,14,1,100,X,F,FI,1.D-5,A2SP,IPVIP,WORKP)
THETAG=X (1)

CSTHEG=DCOS (THETAG)

SNTHEG=DSIN (THETAG)

* CALCULATE TAUG

I

E

eq. (2.38)

F(HG .EQ. 'L') THEN
TAUG=THETAG-QG+PHIG
LSE
TAUG=THETAG+QG-PHIG

END IF

C

STAUG=DCOS (TAUG)
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SNTAUG=DSIN (TAUG)

*

CALCULATE UG

(o]

m———- eq. (2.43)
IF(HG .EQ. 'L')THEN
UG=RG*CTPSIG*CSPSIG-SG* ((MG2-SNRT2) *CSPSIG*SNTHEG-DSIN (QG-PHIG) *
# CSRT2*SNPSIG) / (CSRT2*SNTAUG)
ELSE
UG=RG*CTPSIG*CSPSIG-SG* ( (MG2~SNRT2) *CSPSIG*SNTHEG+DSIN (QG-PHIG) *
# CSRT2*SNPSIG) / (CSRT2*SNTAUG)
END IF

* CALCULATE MAIN CONTACT POINT

¢ ———-- eq. (2.1)
Bcx=RG*CTPSIG-UG*CSPSIG
Bcy=UG*SNPSIG*SNTHEG
Bcz=UG*SNPSIG*CSTHEG

c ————- eq. (2.2)

Ncx=SNPSIG
Ncy=CSPSIG*SNTHEG
Ncz=CSPSIG*CSTHEG

c ———-- eq. (2.9
EGIex=0.D00
EGIcy=CSTHEG
EGIcz=-SNTHEG

c ———~- eq. (3.13)

CALL TRCOOR (Bpx,Bpy,Bpz,
. pll,pl2,p13,p21,p22,p23,p31,p32,p33,p1,p2,p3,
. Bex,Bey,Bcz)
c ————- eq. (3.16)
CALL TRCOOR (Npx,Npy,Npz,
. pll,pl2,pl3,p21,p22,p23,p31,p32,p33,0.D00,0.D00,0.D0O0,
. Ncx,Ney,Nez)
c ————- eq. (3.17)
CALL TRCOOR (EGIpx,EGIpy,EGlpz,
. pll,pl2,pl13,p21,p22,p23,p31,p32,p33,0.D00,0.D00,0.D00,
. EGIcx,EGIcy,EGIcz)

¢ ——==- fig. 18 & sec. 3.3
Bfx=Bpx
Bfy=Bpy
Bfz=Bpz
Nfx=Npx
Nfy=Npy
Nfz=Npz
EGIfx=EGIpx
EGIfy=EGIpy
EGIfz=EGIpz

*

* CALCULATE PSIP

¢ ~——=- eq. (3.83)
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*

%

[g]

[g]

PSIP=DASIN(CSD1*Nfx-SND1*Nfz)
IF (I .EQ. 1)THEN
PSIP=-PSIP+180.D00*CNST

END IF

CSPSIP=DCOS (PSIP)

SNPSIP=DSIN(PSIP)

CALCULATE TAUP

----- eqs. (3.84)-(3.86)
TAUP=DATAN2 (Nfy/CSPSIP, (NEx-CSD1*SNPSIP) / (~SND1*CSPSIP))
CSTAUP=DCOS (TAUP)
SNTAUP=DSIN (TAUP)

CALCULATE PRINCIPAL CURVATURES AND DIREGTIONS OF THE GEAR CUTTER

----- eq. (2.10)
KGI=-CTPSIG/UG
----- eq. (2.12)
KGII=0.D00
————— the second principal direction is determined by rotating of
----- the first principal derection about unit normal by 90 degrees
CALL ROTATE(EGIIfx,EGIIfy,EGIIfz,EGIfx,EGIfy,EGIfz,RITAG,
. Nfx,Nfy,Nfz)

CALCULATE W2G

----- eqs. (3.18)-(3.20)

IF(HG .EQ. 'L')THEN
W2fx=-SNPIT2
WGEx=—-MG2*CSD2
W2£y=0.D00
WGEy=0.DO00
W2£z=CSPIT2
WGEz=-MG2*SND2
ELSE

W2£fx=SNPIT2
WGEx=MG2*CSD2
W2£y=0.D00
WGEy=0.D00
W2f£2=-CSPIT2
WGEz=MG2*SND2

END IF

W2GEx=W2fx-WGEx
W2GEy=W2£fy-WGEy
W2GE2=W2fz-WGfz

CALCULATE VT2, VTG, AND VT2G

----- eq. (3.22)
CALL CROSS(VT2£x,VT2fy,VT2fz,W2fx,W2fy,W2Ez,BEx, BEy,BE2)
----- eq. (3.21)
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*
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0
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b

%

[¢]

CALL CROSS (VIGEx,VTGfy,VTGEz, WGEx,WGEy,WGEz,BEx,BEy, BEZ)
————— eq. (3.23)

VTI2GEx=VT2fx-VTGEx

VT2GEy=VT2£y-VIGEy

VI2Gfz=VT2£2~-VTIGE2

CALCULATE V(2G)GI AND V(2G)GII

----- eq. (3.24)
CALL DOT(VGI,EGIfx,EGIfy,EGIfz,VT2GEx, VI2GEy,VT2GEz)
----- eq. (3.25)

CALL DOT(VGII,EGI1fx,EGIIfy,EGIIfz,VT2GEx,VT2GEy, VI2GEz)
CALCULATE Al3,A23,A33

----- eq. (3.26)
CALL DET(DETI,W2Gfx,W2Gfy,W2Gfz ,Nfx,Nfy ,Nfz,EGIfx,EGIfy,EGIfz)
Al13=-KGI*VGI-DETI

----- eq. (3.27)
CALL DET(DETII,W2GEx ,W2Gfy,W2Gfz ,Nfx,Nfy,Nfz,EGIIfx,EGI1fy,EGII£fz)
A23=-KGII*VGII-DETII

----- eq. (3.28)
CALL DET(DET3,Nfx,Nfy,Nfz,W2GEx ,W2Gfy,W2Gfz,VI2GEx,VT2GEy,VT2GEz)
CALL CROSS(Cx,Cy,Cz,W2fx,W2fy,W2fz,VTGEx,VIGfy,VTGEz)
CALL CROSS(Dx,Dy,Dz,WGfx,Wny,Wsz,VTZEx,VT2fy,VT2fz)
CALL DOT(DET45,Nfx,Nfy,Nfz,Cx-Dx,Cy~Dy,Cz-Dz)
A33=KGI*VGI*VGI+KGII*VGII*VGII-DET3~DET45

CALCULATE SIGMA

----- eq. (3.29)
P=A23%A23-413%A13+ (KGI~KGII) *A33
SIGDBL=DATAN(2.D00*A13*A23/P)
SIGMA=0.5D00*SIGDBL

CALCULATE K2I AND K2II

----- egs. (3.30)-(3.31)
T1=P/ (A33*DCOS (SIGDBL))
T2=KGI+KGII-(A13*A13+A23%*A23) /A33
K21=(T1+T2)/2.D00
K211=(T2-T1)/2.D00

CALCULATE E21 AND E2II

----- description after eq. (3.29)
CALL ROTATE(E2I1fx,E2I1fy,E21fz,EGIfx,EGIfy,EGIfz,-SIGMA,Nfx, Nfy,
. Nfz)
CALL ROTATE(E211fx,E211fy,E211f2,E21fx,E2I1fy,E21f2,RITAG,
. Nfx, Nfy, Nfz)
----- eq. (3.44)
TNETAG=DSIN (DLTA+SIGMA) /DCOS (DLTA+SIGMA)
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* CALCULATE W2

c ————- eq. (3.33)
IF(HG .EQ. 'L')THEN
W2fx=-MM21*SNPIT2
W2£y=0.D00
W2£fz=MM21*CSPIT2
ELSE
W2fx=MM21*SNPIT2
W2£fy=0.D00
W2£z=-MM21*CSPIT2
END IF

*

* CALCULATE W1

%*

c ————- eq. (3.32)
IF(HG .EQ. 'L')THEN
W1fx=—-SNPIT1
W1Ey=0.D00
W1fz=-CSPIT1
ELSE
W1fx=SNPIT1
W1£y=0.D00
W1fz=CSPIT1
END IF

%

CALCULATE W12

————— eq. (3.34)
W12fx=W1Efx-W2£fx
W12fy=W1fy-W2fy
W12fz=W1fz-W2fz

0

* CALCULATE VT2

c ——=-- eq. (3.36)
CALL CROSS (VI2£x,VT2fy,VT2fz,W2Ex,W2Ey,W2E2z,BEx,Bfy,BEf2)

* CALCULATE VT1

c ————- eq. (3.35)
CALL CROSS(VTlfx,VTlfy,VT1fz,Wlfx,Wlfy,Wlfz,BEx,Bfy,Bfz)

*

CALCULATE VTI12

(2]

----- eq. (3.37)
VI12£x=VT1£x-VT2£x
VI12fy=VT1fy-VT2£fy
VT12£2=VT1£2-VT2£f2

*

CALCULATE V2

c -——~—— eq. (3.38)

138




%

0

c

*
%
*

c

[¢]

¥*

0O

M.

<

CALL DOT(V2I,VT12fx,VT12fy,VT12f2,E21fx,E21fy,E21£z2)
----- eq. (3.39)
CALL DOT(V2II,VT12fx,VT12fy,VT12£2,E211fx,E211fy,E211£z)

CALCULATE A31

----- eq. (3.40)
CALL DET(DET1,W12fx,W12fy,W12fz,Nfx,Nfy,Nfz,E21fx,E21fy,E21f2)
A31=-K2I1*V2I-DET1

————— eq. (A.33)
Al3=a31

CALCULATE A32

————— eq. (3.41)
CALL DET(DET2,W12fx,W12fy,W12f2z,Nfx,Nfy,Nfz,E211fx,E211fy,E211£z)
A32=-K2I1*V2I1-DET2

‘‘‘‘‘ eq. (A.35)
A23=A32

CALCULATE A33

----- eq. (3.42)
CALL DET(DET3,Nfx,Nfy,Nfz,W12fx,W12fy ,W12fz,VT12£x,VT12fy,VT12£2)
CALL CROSS(Cx,Cy,Cz,Wlfx,Wlfy,Wlfz,VT2fx,VT2fy,VI2f2)
CALL CROSS(Dx,Dy,Dz,W2fx,W2fy,W2fz,VT1fx,VT1fy,VT1fz)
CALL DOT(DOT1,Nfx,Nfy,Nfz,Cx-Dx,Cy-Dy,Cz-Dz)
CALL DET(DET4,fo,ny,Nfz,Wfo,Wny,WZfz,fo,ny,sz)
A33=K2I*V2I*V2I+K2II*V2II*V2II-DET3-DOT1+M21PRM*DET4

CALCULATE ETAP

----- eq. (3.53)
ETAP=DATAN (((A33+A31*%V2I) *TNETAG-A31*V2II)/ (A33+A32%
(V2II-V2I*TNETAG)))
TNETAP=DSIN (ETAP) /DCOS (ETAP)

CALCULATE All, Al2, AND A22

N3=(1.DO0+TNETAP*TNETAP) *A33

----- eq. (3.72)
N1=(a13*A13- (A23*TNETAF)} **2) /N3

----- eq. (3.73)
N2=(A23+A13*TNETAP) * (A13+A23*TNETAP) /N3
KS2=K2I+K2I1
G2=K2I-K2I1

----- eqs. (3.74), (3.75)
KS1=KS2-((4.DOO*AXIA*AXIA-N1*N1~N2*N2) * (1.DOO+TNETAP*TNETAP) /

(-2.DO0*AXIA* (1.DOQ0+TNETAP*TNETAP) +N1* (TNETAP*TNETAP-1.D00)

. =2.DOO*N2*TNETAP))

----- eqgs. (3.66), (3.69) & description after eq. (3.60)
Al1=TNETAP*TNETAP/ (1.D0O0+TNETAP*TNETAP) * (KS2-KS1) +N1

----- eqs. (3.67), (3.70) & description after eq. (3.60)
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Al2=-TNETAP/ (1.DO0O+TNETAP*TNETAP) * (KS2-KS1) +N2

¢ ————- eqs. (3.68), (3.71) & description after eq. (3.60)
A22=1.D00/ (1.DOO+TNETAP*TNETAP) * (KS2-KS1) -N1

¢ ————- eq. (A.32)
A21=A12

¥*

* CALCULATE SIGMA(12)

%

[¢]

————— eq. (3.77)
SIGDBL=DATAN (2.D00%*A12/ (K2I-K21I-411+A22))
SIGM12=.5D00*SIGDBL

* CALCULATE K11 AND K1II

c ——-—- eq. (3.78)
G1=2.D00*A12/DSIN (SIGDBL)
¢ ——-—= eq. (3.79)

K1I=.5D00* (KS1--Gl)
K1II=.5D00* (KS1-G1)

* CALCULATE E1I AND E1II

c ———-- similar to description after eq. (3.29)
CALL ROTATE(ElIfx,ElIfy,E11f2,E21fx,E21fy,E21fz,-SIGM12,Nfx,Nfy,
. Nfz)

CALL ROTATE{E1I1fx,E1IIfy,El111fz,E11fx,E11fy,E11£2,RITAG,
. Nfx,Nfy,Nfz)

* PINION

* CALCULATE PRINCIPAL DIRECTIONS OF THE PINION CUTTER

¢ ————- eq. (3.92)
IF(HG .EQ. 'L')THEN
EPIfx=SND1*SNTAUP
EPIfy=CSTAUP
EPI1£fz=CSD1*SNTAUP
ELSE
EPIfx=-SND1*SNTAUP
EPI1fy=~CSTAUP
EPIfz=-CSD1*SNTAUP
END IF
IF (DACOS (EGIEx*EPIfx+EGIfy*EPIfy+EGIfz*EPI1£f2) /CNST. .GT. 45.D00)
. THEN
EPIfx=~EPIfx
EPI1fy=~EPIfy
EP1fz=~EPIfz
END IF
_CALL ROTATE(EPIIfx,EPIIfy,EPIIfz,EPIfx,EPIfy,EPIf2z,RITAG,
. Nfx,Nfy,Nfz)

%

* CALCULATE THE ANGLE BETWEEN PRINCIPAL DIRECTIONS OF PINION AND CUTTER

140




*»

(g]

M.
by

(]

----- cross product of eli and epi
SNSIGM=(E11fy*EPI1£z~E11fz*EPIfy) /NEx

----- dot product of eli and epi
CSSIGM=El1Ifx*EPIfx+ElIfy*EPIfy+E11f2*EP1f2
CS2S1G=2.D0O0*CSSIGM*CSSIGM-1.D00
TN2SIG=2.D00*SNSIGM*CSSIGM/CS2SIG

CALCULATE PRINCIPAL CURVATURES OF PINION CUTTER

----- eq. (2.12)
KPII1=0.D0O
----- eq. (3.94)

KPI=K1I*K1II/(K1I*SNSIGM*SNSIGM+K1II*CSSIGM*CSSIGM)
CALCULATE All, Al2, AND A22

----- eq. (A.31)
Al1=KPI-K1I*CSSIGM*CSSIGM-K1II*SNSIGM*SNSIGM

----- eq. (A.32)
A12=(K1I-K1II)*SNSIGM*CSSIGM

----- eq. (A.34)
A22=KPII-KI1I*SNSIGM*SNSIGM-K1II*CSSIGM*CSSIGN

CALCULATE UP

----- eq. (3.95)
UP=1.D00/ (KPI*SNPSIP/CSPSIP)

CALCULATE RP

----- eq. (3.99)
Bmx=-Bfx*CSD1+Bfz*SND1
————— eq. (3.100)

RP=(Bmx+UP*CSPSIP) *SNPSIP/CSPSIP
* CALCULATE MP1

----- eq. (3.107)
Cl1=(NEy*EPI1£f2-Nfz*EPIfy) *CSD1+ (NEy*EPI1fx~NEfx*EPIfy) *SND1
C12=(Nfz*EPIfy-Nfy*EPI1£z) *SNPIT1+ (Nfy*EPIfx-Nfx*EPIfy) *CSPIT1

----- eq. (3.108)

C22=- (Nfy*EPII£2-NEfz*EPIIfy) *SNPIT1+ (Nfy*EPII1fx-NEx*EPIIfy) *CSPITI
IF(HG .EQ. 'R')THEN

Cli=-Cl1

Cl12=-C12

C22=-C22

END IF

----- eq. (3.119)
T4=(Bfy*CSRT1) / (EPIIfx*CSD1-EPII1Ez*SND1)
IF(HG .EQ. 'R') THEN

T4=-T4
END IF
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c —~=—- eq. (3.120)

T1=-Cl1/KPI

T2=(A11*KPII*T4+A11%C22-A12%C12) / (A12*KPI)
c ——~——- eq. (3.122)

Ul1=T1*EPIfx

Ul2=T2*EPIfx+T4*EPIIfx

U21=T1*EPIfy

U22=T2*EPIfy+T4*EPIIfy

U31=T1*EPIfz

U32=T2*EPIfz+T4*EP1I1f2

c —~-—- eq. (3.124)
V1=U21*Nfz*CSD1+U21*Nfx*SND1-Nfy* (U11*SND1+U31*CSD1)
¢ ————= eq. (3.125)

V2= (U22*CSD1-U21*SNPIT1) *Nfz- (U11*CSPIT1+U12*SND1+U32*CSD1-U31
*SNPIT1) *Nfy+ (U21*CSPIT1+U22*SND1) *Nfx
c ————- eq. (3.126)
V3=U22*CSPITI*Nfx+ (U32*SNPIT1-U12*CSPIT1) *Nfy-U22*SNPIT1*Nfz
IF(HG .EQ. 'R')THEN
v1=-v1
v2=-v2
v3=-v3
END IF
c ————- eq. (3.132)
H11=-U21*CSPIT1+SND1*(Bfz*SNPIT1-Bfx*CSPIT1)
¢ ————- eq. (3.134)
H21=U11*CSPIT1-U31*SNPIT1+Bfy*SNRT1
¢ ————- eq. (3.136)
H31=U21*SNPIT1+CSD1* (B£2*SNPIT1~-Bfx*CSPIT1)
¢ ———-- eq. (3.133)
H12=(Bfz*SNPIT1-Bfx*CSPIT1-U22)*CSPIT1
c ————- eq. (3.135)
H22=- (Bfy-U12*CSPIT1+U32*SNPIT1)
¢ ———-- eq. (3.137)
H32=- (Bfz*SNPIT1-B£fx*CSPIT1-U22) *SNPIT1
IF{(HG .EQ. 'R')THEN
H11=U21*CSPIT1+SND1* (Bfz*SNPIT1-Bfx*CSPIT1)
H21=-U11*CSPIT1+U31*SNPIT1+Bfy*SNRT1
H31=-U21*SNPIT1+CSD1* (Bfz*SNPIT1-Bfx*CSPIT1)
H12=(B£2*SNPIT1-Bfx*CSPIT1+U22) *CSPIT1
H22=- (Bfy+U12*CSPIT1-U32*SNPIT1)
H32=-(Bfz*SNPIT1-Bfx*CSPIT1+U22) *SNPIT1

END IF
c ————- eq. (3.139)
F1=NEx*H11+NEy*H21+N£z*H31
c ———~- eq. (3.140)
F2=NEx*H12+NEy*H22+NEz*H32
c ———~- eq. (3.145)

Y2=A12%*(2.DOO*KPI*T1*T2~V2-F1)
Y3=A12*(KPI*T2*T2+KPII*T4*T4-V3-F2) - (KPI*T2+C12) *(KPII1*T4+C22)
MP1=-Y3/Y2

* CALCULATE EM AND LM
*
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c —~——- eq. (3.122)

VT1PEx=U11*MP1+U12

VT1Pfy=U21*MP1+U22

VT1P£2=U31*MP1+U32

c —~——-- eq. (3.111)

IF(HG .EQ. 'L') THEN
EM=(Bfy*CSPIT1-VT1P£x) / (MP1*SND1) +Bfy
LM=(BEx*CSPIT1-Bfz*SNPIT1+VT1P£fy) /MP1+Bfx*SND1+Bfz*CSD1

ELSE
EM=(-Bfy*CSPIT1-VT1Pfx) /(MP1*SND1)~Bfy
LM=(Bfx*CSPIT1-Bfz*SNPIT1-VT1Pfy) /MP1+Bfx*SND1+Bfz*CSDl

END IF

%

* CALCULATE SP AND QP
%
c ————- eqs. (3.150), (3.151)
IF(HG .EQ. 'L')THEN
Z1=-Bfy+EM-UP*SNPSIP*SNTAUP
ELSE
Z1=Bfy+EM+UP*SNPSIP*SNTAUP
END IF
22=Bfx*SND1+Bfz2*CSD1-LM~UP*SNPSIP*CSTAUP
SP=DSQRT (Z1*Z1+22%*Z22)
QP=DATAN(Z1/22)
IF(HG .EQ. 'L')THEN
THETAP=TAUP-QP
ELSE
THETAP=TAUP+QP
END IF
s
* CONVERT RADIAN TO DEGREE
%
PSIGDG=PSIG/CNST
PSIPDG=PSIP/CNST
TAUGDG=TAUG/CNST
TAUPDG=TAUP/CNST
QGDG=QG/CNST
QPDG=QP/CNST
THEGDG=THETAG/CNST
THEPDG=THETAP/CNST
PHIGDG=PHIGO/CNST
b3

* QUTPUT

*
WRITE(72,10000) PSIGDG,PSIPDG,RG,RP, TAUGDG, TAUPDG, SG, SP,QGDG, QPDG,
. MG2,MP1,EM,LM,UG,UP, THEGDG, THEPDG, PHIGDG

10000 FORMAT(1X,'PSIGDG =',G20.12,12X,'PSIPDG =',G20.12,/
,1X, 'RG =',G20.12,12%,'RP =',G20.12,/
,1X, 'TAUGDG  =',G20.12,12X,'TAUPDG =',G20.12,/
,1X,'SG =',G20.12,12X, 'SP =',G20.12,/
,1X, 'QGDG =',G620.12,12X, 'QPDG =',G20.12,/
,1X, 'MG2 =',G20.12,12X, 'MP1 =',G20.12,/
,1X, 'EM =',G20.12,12%,'LM =',G20.12,/
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%

* TCA
x*

b

,1X,'UG =',G20.12,12X, 'UP =',620.12,/
,1X, 'THETAGDG =',G20.12,12X, 'THETAPDG =',G20.12,/
,1X, 'PHIGODG =',G20.12,12X,/)

IF(I .EQ. 1)THEN

TPAR (1) =RG*CSPSIG/SNPSIG*CSPSIG
TPAR (2) = (MG2-SNRT2) *CSPSIG

TPAR (3)=CSRT2*SNPSIG

TPAR (4) =RG*CSPSIG/SNPSIG

TPAR (5) =CSD2*SNPSIG

TPAR (6) =SND2*CSPSIG

TPAR (7)=SND2*SNPSIG

TPAR (8) =CSD2*CSPSIG

TPAR (9) =RP*CSPSIP/SNPSIP*CSPSIP
TPAR (10) = (MP1-SNRT1) *CSPSIP
TPAR(11)=CSRT1*SNPSIP

TPAR(12) =SNRT1*CSPSIP

TPAR (13) =RP*CSPSIP/SNPSIP

TPAR (14) =CSD1*SNPSIP

TPAR (15)=SND1*CSPSIP

TPAR (16) =SND1*SNPSIP

TPAR (17)=CSD1*CSPSIP

TPAR (18) =LM*SND1

TPAR (19) =LM*CSD1

PHIP=0.D00
PHI21=0.D00
PHI11=0.D00
CSPH11=DCOS (PHI11)
SNPH11=DSIN(PHI1l)

TX(1)=PHIP
TX(2)=THETAP
TX(3)=PHI21
TX (4)=PHIGO
TX (5) =THETAG
CALL NONLIN(TCN,14,5,100,TX,TF,TF1,1.D-5,AZS,IPVT,WORK)
PHIPO=TX (1)
THEPO=TX (2)
PHI210=TX(3)
PHIGO=TX (4)
THEGO=TX (5)

TX (1) =PHIPO
TX (2) =THEPO
TX(3)=PHI210
TX (4) =PHIGO
TX (5) =THEGO
D1HI11=18.D00/36.DO0*CNST

DO 100 I1J=1,60
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CSPH11=DCOS (PHI11)

SNPH11=DSIN(PHI11)

CALL NONLIN(TCN,14,5,100,TX,TF,TF1,1.D~5,AZS, IPVT,WORK)
PHIP=TX (1)

THETAP=TX (2)

PHI21=TX(3)

PHIG=TX (&)

THETAG=TX (5)

ERROR= ((PHI21*36.D02-PHI210%*36.D02)~PHI111%36.D02*TN1/TN2) /CNST

CALL PRING2(KS2,G2,E21fx,E21fy,E21f2,E2I1fx,E211fy,E211£f2)
CALL PRINP1(KS1,Gl1,E1Ifx,ElIfy,E1Ifz,E111£x,E11Ify,E111£z2)
CALL SIGAN2(E21fx,E21fy,E21fz,E211£x,E2I1fy,E211f2,E11fx,El1fy,
E11fz,CS251G,SN2SIG,SIGM12)
CALL EULER (KS2,G2,KS1,G1,CS2SIG,SN2SIG, IEU)
IF(IEU .EQ. 1)THEN
WRITE(72,%*) 'THERE IS INTERFERENCE'
GO TO 88888
END IF
CALL ELLIPS(KS2,G2,KS1,G1,CS281G,SN2SIG,DEF,ALFAlL,
AXISL,AXISS,E1Ifx,E11fy,E11fz)
b3

CALL PF(B2px,B2py,B2pz,B2£fx,B2fy,B2f2)

%

XBf, YBf, and ZBf is the direction of the long axis of the ellipse

CALL PF(XBp,YBp,ZBp,XBf,YBf,ZBf)
ELBlpx=B2px+XBp
ELBlpz=B2pz+ZBp
ELB2px=B2px-XBp
ELB2pz=B2pz-ZBp

IF(I .EQ. 1)THEN
WRITE(79,9000) I1J,PHI11/CNST,I1J,ERROR
WRITE (78,8000)1J,B2pz,1J,B2px
WRITE(77,7000)ELBlpz,ELBlpx,ELB2pz,ELB2px
ELSE
WRITE (89,9000) IJ,PHI11/CNST, I1J,ERROR
WRITE (88,8000)1J,B2pz,IJ,B2px
WRITE(87,7000)ELBlpz,ELBlpx,ELB2pz,ELB2px
END IF

%

PHI11=PHI11+DIHI1l

100 CONTINUE
*

PHI11=0.DOO
CSPH11=DCOS (PHI11)
SNPH11=DSIN(PHI11l)
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%

%*

%

%

*

TX (1) =PHIPO

TX (2) =THEPO

TX(3)=PHI210

TX (4) =PHIGO

TX (5) =THEGO
D1HI11=18.D00/36.DO0O*CNST

DO 200 1J=1,60

CSPH11=DCOS (PHI11)

SNPH11=DSIN(PHI1l)

CALL NONLIN(TCN,14,5,100,TX,TF,TF1,1.D-5,AZS, IPVT,WORK)
PHIP=TX (1)

THETAP=TX (2)

PHI21=TX(3)

PHIG=TX (4)

THETAG=TX (5)

ERROR=((PHI21*36.D02-PHI210*36.D02) -PHI11*36.D02*TN1/TN2) /CNST

CALL PRING2(KS2,G2,E21fx,E21fy,E21fz,E211fx,E211fy,E211fz)

CALL PRINP1(KS1,Gl,E11fx,E1Ify,E11f2z,E111fx,E1I11fy,E111f2)

CALL SIGAN2(E2Ifx,E21fy,E21f2,E211fx,E211fy,E211£2,E11£x,E11fy.
E11f2,CS2SIG,SN2SIG,SIGM12)

CALL EULER(KS2,G2,KS1,G1,CS2SIG,SN2SIG, IEU)
IF(IEU .EQ. 1) THEN

WRITE(72,%*) 'THERE IS INTERFERENCE'

GO TO 88888

END IF

CALL ELLIPS(KS2,G2,KS1,G1,CS2S1IG,SN2S1G,DEF,ALFAL,
AXISL,AXISS,E11fx,E11fy,E11£z)

CALL PF(B2px,B2py,B2pz,B2fx,B2fy,B2f2)
XBf, YBf, and ZBf is the direction of the long axis of the ellipse

CALL PF(XBp,YBp,ZBp,XBf,YBf,ZBf)
ELBlpx=B2px+XBp
ELBlpz=B2pz+ZBp
ELB2px=B2px—XBp
ELB2pz=B2pz-ZBp

IF(I .EQ. 1) THEN
WRITE(79,9001)1J,PHI11/CNST,1J,ERROR
WRITE(78,8001)1J,B2pz,1J,B2px
WRITE(77,7000)ELBlpz,ELBlpx,ELB2pz,ELB2px
ELSE

WRITE (89,9001) 1J,PHI11/CNST, IJ,ERROR
WRITE(88,8001)1J,B2pz,1J,B2px
WRITE(87,7000)ELBlpz,ELBlpx,ELB2pz,ELB2px
END IF

PHI11=PHI11-D1HI11
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200 CONTINUE
%
END IF

99999 CONTINUE
88888 CONTINUE

7000 FORMAT(6X,'EX(1)=',F9.6,/,6X,'EY(1)="',F9.6,/,
6X,'EX(2)=',F9.6,/,6X, 'EY(2)=",F9.6,/,
. 6X, 'CALL CURVE(EX,EY,2,0)"')
8000 FORMAT(6X,'X0(',12,')="',F9.6,/,6X,'Y0(',12,')=",F9.6)
8001 FORMAT(6X, 'X1(',12,')="',F9.6,/,6X,'Y1(',12,')=",F9.6)
9000 FORMAT(6X,'X0(',12,')=',F7.3,/,6X,'Y0(',12,')=",F8.3)
9001 FORMAT(6X,'X1(',12,')="',F7.3,/,6X,'Y1(',12,"')=",F8.3)
END

* FOR THE DETERMINATION OF MEAN CONTACT POINT

SUBROUTINE PCN(X,F,NE)
IMPLICIT REAL*8 (A-H,K,M-Z)
CHARACTER*8 HG
INTEGER NE
REAL*8 X(NE),F(NE),PAR(6)
COMMON/P1/PAR
COMMON/AQ/HG
COMMON/Al/pl1,pl2,p13,p21,p22,p23,p31,p32,p33,pl1,p2,p3
COMMON/A2/SG,CSRT2,QG, SNPSIG,CSPSIG
COMMON/A3/TND1, TND2,RITAG
THETAG=X (1)
CSTHEG=DCOS (THETAG)
SNTHEG=DSIN (THETAG)
IF(HG .EQ. 'L')THEN
UG=PAR (1) -SG* (PAR (2) *SNTHEG+PAR (3)) / (CSRT2*DSIN (THETAG~QG) )
ELSE
UG=PAR (1) -SG* (PAR (2) *SNTHEG+PAR (3) ) / (CSRT2*DSIN (THETAG+QG))
END IF
Bcx=PAR (4) ~UG*CSPSIG
Bcy=UG*SNPSIG*SNTHEG
Bcz=UG*SNPSIG*CSTHEG
CALL TRCOOR (Bpx,Bpy,Bpz,
. pll,pl2,pl3,p21,p22,p23,p31,p32,p33,pl,p2,p3,
. Bcx,Bey,Bez)
XM=Bpz* (TND1-TND2) /2.D00
F(1)=Bpx—-XM
END

* FOR THE DETERMINATION OF COORDINATES AND NORMALS OF CONTACT POINTS
SUBROUTINE TCN(TX,TF,NE)
IMPLICIT REAL*8(A-H,K,M-Z)

INTEGER NE
CHARACTER*8 HG
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REAL*8 TX(NE),TF(NE),TPAR(19),LM
COMMON/AQ/HG
COMMON/T1/TPAR
COMMON/A2/SG,CSRT2,QG, SNPSIG, CSPSIG
COMMON/A4/CSD2,SND2,CSPIT2,SNPIT2
COMMON/B1/CSPH11, SNPH11,SP,EM,LM,CSRT1,CSD1, SND1,CSPSIP, SNPSIP
COMMON/B2/CSPIT1,SNPIT1,MP1,MG2, QP
COMMON/B3/B2£x,B2fy,B2fz
COMMON/B4/CSPH2,SNPH2,CSPH21, SNPH21
COMMON/C1/UG, CSTAUG, SNTAUG
COMMON/C2/N2£x,N2fy,N2f2z
COMMON/D1/UP,CSTAUP, SNTAUP
COMMON/F1/PHIGO
COMMON/G1/DA,DV
PHIP=TX (1)
THETAP=TX(2)
PHI21=TX(3)
PHIG=TX (4)
THETAG=TX (5)
CSPHIP=DCOS (PHIP)
SNPHIP=DSIN (PHIP)
CSTHEP=DCOS (THETAP)
SNTHEP=DSIN (THETAP)
CSPH21=DCOS (PHI21)
SNPH21=DSIN (PHI21)
CSPHIG=DCOS (PHIG)
SNPHIG=DSIN (PHIC)
CSTHEG=DCOS (THETAG)
SNTHEG=DSIN (THETAG)
PHI2=(PHIG-PHIGO) /MG2
PHI1=PHIP/MP1
CSPH2=DCOS (PHI2)
SNPH2=DSIN(PHI2)
CSPH1=DCOS (PHI1)
SNPH1=DSIN (PHI1)
IF(HG .EQ. 'L')THEN
TAUP=THETAP+QP-PHIP
ELSE
TAUP=THETAP-QP+PHIP
END IF
CSTAUP=DCOS (TAUP)
SNTAUP=DSIN (TAUP)
IF(HG .EQ. 'L')THEN
TAUG=THETAG-QG+PHIG
ELSE
TAUG=THETAG+QG~PHIG
END IF
CSTAUG=DCOS (TAUG)
SNTAUG=DSIN (TAUG)
CSQPHP=DCOS (QP-PHIP)
SNQPHP=DSIN (QP-PHIP)
CSQPHG=DCOS (QG-PHIG)
SNQPHG=DSIN (QG-PHIG)
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*

*

*

*

* GEAR

* SURFACE EQUATIONS

IF(HG .EQ. 'L') THEN
UG=TPAR (1) -SG* (TPAR (2) *SNTHEG-SNQPHG*TPAR (3) ) / (CSRT2*SNTAUG)
B2py=UG*SNPSIG*SNTAUG-SG*SNQPHG
ELSE
UG=TPAR (1) -SG* (TPAR (2) *SNTHEG+SNQPHG*TPAR (3)) / (CSRT2*SNTAUG)
B2py=UG*SNPSIG*SNTAUG+SG*SNQPHG
END IF
B2px=CSD2* (TPAR (4) ~UG*CSPSIG) ~SND2* (UG*SNPS IG*CSTAUG+SG*CSQPHG)
B2pz=SND2* (TPAR (4) ~UG*CSPSIG) +CSD2* (UG*SNPSIG*CSTAUG+SG*CSQPHG)
N2px=TPAR (5) -TPAR (6) *CSTAUG
N2py=CSPSIG*SNTAUG
N2pz=TPAR (7) +TPAR (8) *CSTAUG

% [wa] = [Mwa] [Map]
*

*

IF(HG .EQ. 'L') THEN
CALL COMBI(wpll,wpl2,wpl3,wp2l,wp22,wp23,wp31l,wp32,wp33,
wpl,wp2,wp3,
CSPH2,SNPH2,0.D00,-SNPH2,CSPH2,0.D00,0.D00,0.D00, 1.D00,
0.D00,0.D00,0.D00,
CSPIT2,0.D00, SNPIT2,0.D00,1.D00,0.D00,-SNPIT2,0.D00,CSPIT2,
0.D00, 0.D00, 0.D00)
ELSE
CALL COMBI(wpll,wpl2,wpl3,wp2l,wp22,wp23,wp3l,wp32,wp33,
wpl,wp2,wp3,
CSPH2,-SNPHZ,0.D00, SNPH2,CSPH2,0.D00, 0.D00, 0.D00, 1.D00,
0.D000,0.D00,0.D00,
CSP1T2,0.D00,SNPIT2,0.D00,1.D00,0.D00,-SNPI1T2,0.D00,CSPIT2,
0.D00,0.D00,0.D00)
END IF
CALL TRCOOR (B2wx,B2wy,B2wz,

. wpll,wpl2,wpl3,wp2l,wp22,wp23,wp31l,wp32,wp33,wpl,wp2,wp3,
. B2px,B2py,B2pz)

CALL TRCOOR (N2wx,N2wy,N2wz,

. wpll,wpl2,wpl3,wp2l,wp22,wp23,wp3l,wp32,wp33,0.D00,0.D00,0.D00,
. N2px,N2py,N2pz)
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*

* [Mfw]=[Mfa] [Maw]
%

fall=CSPIT2
£al12=0.D00
fal3=-SNPIT2
£a21=0.D00
£322=1.D00
£a23=0.D00
£a31=SNPIT2
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£a32=0.D00
fa33=CSP1T2
£fal=0.d00
£a2=0.d00
fa3=0.4d00
IF(HG .EQ. 'L') THEN
CALL COMBI (fwll,fwl2,fwl3, fw2l,fw22,fw23,fw3l, fw32, fw33,
fwl, fw2, fw3,
CSP1T2,0.D00,-SNPIT2,0.D00,1.D00,0.D00,SNPIT2,0.D00,CSPIT2,
0.D00,0.D00,0.D00, )
CSPH21,-SNPH21,0.D00, SNPH21,CSPH21,0.D00,0.D00,0.D00,1.D00,
0.000,0.D00,0.D00)
ELSE
CALL COMBI (fwll,fwl2,fwl3, fu2l,fw22,fw23,fw3l,fw32,fw33,
fwl, fw2,fw3,
csp1712,0.D00,-SNPIT2,0.D00,1.D00,0.D00,SNPIT2,0.D00,CSPIT2,
0.D00,0.D00,0.D00,
CSPH21,SNPH21,0.D00,-SNPH21,CSPH21,0.D00,0.D00,0.D00,1.D00,
0.D00,0.D00,0.D00)
END IF
CALL TRCOOR(B2fx,B2fy,B2fz,
fwll,fwl2,fwl3, fw2l,£fw22,£fw23,fw3l,fw32,fw33, fwl, fw2, fuw3,
. B2wx,B2wy,B2wz)
CALL TRCOOR(Nfo,Nny,NZfZ,
fwll,fwl2,fwl3, fw2l,fw22,fw23, fw3l, fw32, fw33,0.D00,0.D00,0.D00,
. N2wx,N2wy,N2wz2)
%

* PINION
*

* SURFACE EQUATIONS
¥
IF(HG .EQ. 'L')THEN
UP=TPAR (9) - (SP* (TPAR (10) *SNTHEP+SNQPHP*TPAR (11) ) —~EM* (TPAR(11) +
TPAR (12) *CSTAUP) ~LM*TPAR (12) *SNTAUP) / (CSRT1*SNTAUP)
Blpy=UP*SNPSIP*SNTAUP+SP*SNQPHP-EM
ELSE
UP=TPAR (9) - (SP* (TPAR (10) *SNTHEP-SNQPHP*TPAR (11) ) +EM* (TPAR (11) +
TPAR (12) *CSTAUP) ~LM*TPAR (12) *SNTAUP) / (CSRT1*SNTAUP)
Blpy=UP*SNPSIP*SNTAUP-SP*SNQPHP+EN
END IF
B1lpx=CSD1* (TPAR (13)~UP*CSPSIP)-SND1* (UP*SNPSIP*CSTAUP+SP*
CSQPHP) -LM*SND1
B1pz=SND1* (TPAR (13) -UP*CSPSIP) +CSD1* (UP*SNPSIP*CSTAUP+SP*
CSQPHP) +LM*CSD1
N1lpx=-(TPAR (14)-TPAR(15) *CSTAUP)
N1py=-CSPSIP*SNTAUP
N1pz=-(TPAR (16) +TPAR (17) *CSTAUP)
e

% [Mwp]=[Mwa] (Map]
*

IF(HG .EQ. 'L') THEN
CALL COMBI(wpll,wpl2,wpl3,wp2l,wp22,wp23,wp3l,wp32,wp33,
wpl,wp2,wp3,
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CSPH1,-SNPH1,0.D00, SNPH1,CSPH1,0.D00,0.D00,0.D00, 1.D00,
0.D000,0.D00,0.D00,
CSPIT1,0.D00,SNPITI,0.D00,1.D00,0.D00,~SNPIT1,0.D00,CSPITL,
. 0.D00,0.D00,0.D00)
ELSE
CALL COMBI(wpll,wpl2,wpl3,wp2l,wp22,wp23,wp3l,wp32,wp33,
wpl,wp2,wp3,
CSPH1,SNPH1,0.D00,-SNPH1,CSPH1,0.D00,0.D00, 0.D00, 1.D00,
0.D00,0.D00,0.D00,
CSPIT1,0.D00, SNPIT1,0.D00,1.D00,0.D00,-SNPIT1,0.D00,CSPITI,
0.D00,0.D00,0.D00)
END IF
CALL TRCOOR (Blwx,Blwy,Blwz,
. wpll,wpl2,wpl3,wp2l,wp22,wp23,wp3l,wp32,wp33,wpl,wp2,wp3,
. Blpx,Blpy,Blpz)
CALL TRCOOR (Nlwx,Nlwy,Nlwz,
. wpll,wpl2,wpl3,wp2l,wp22,wp23,wp3l,wp32,wp33,0.D00,0.D00,0,D00,
. Nipx,Nlpy,Nlpz)

*
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*
* [Mpw]=[Mpa] [Maw]
*
IF(HG .EQ. 'L') THEN
CALL COMBI(pwll,pwl2,pwl3,pw2l,pw22,pw23,pw3l,pw32,pw33,
pwl,pw2, pw3,
CSpPIT1,0.D00,-SNPIT1,0.D00,1.D00,0.D00,SNPIT]1,0.D00,CSPIT],
0.D00, 0.D000,0.D00,
CSPH11,SNPH11,0.D00,-SNPH11,CSPH11,0.D00, 0.D00,0.D00, 1.D00,
0.D00, 0.D00,0.D00)
ELSE
CALL COMBI(pwll,pwl2,pwl3,pw2l,pw22,pw23,pw3l,pw32,pw33,
pwl,pw2,pw3,
€spr1T1,0.D00,-SNPIT1,0.D00,1.D000,0.D00,SNPIT1,0.D00,CSPIT],
0.D00, 0.D000,0.D00,
CSPH11,-SNPH11,0.D00,SNPH11,CSPH11,0.D00,0.D00,0.D00,1.D00,
0.D00,0.D00,0.D00)
END IF
C/LL TRCOOR (Bipx,Blpy,Blpz,
. pwll,pwl2,pwll3,pw2l,pw22,pw23,pw3l,pw32,pw33,pwl,pw2,pw3,
. Blwx,Blwy,Blwz)
CALL TRCOOR (N1px,Nlpy,Nlpz,
. pwll,pwl2, pwl3, pw2l,pw22,pw23,pw3l,pw32,pw33,0.D000,0.D00,0.D00,
. Nlwx,Nlwy,Nlwz)
Blfx=-Blpx+DA*SNPIT!
Blfy=-Blpy+DV
Bl1fz=Blpz+DA*CSPIT1
N1fx=-Nlpx
Nlfy=-Nlpy
Nlfz=Nlpz
TF(1)=B2fx-Blfx
TF(2)=B2fy-Blfy
TF(3)=B2£fz-Blfz
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* FOR

%*

¥*

TF (4)=N2fx-N1fx
TF(5)=N2fy-Nlfy
END

THE DETERMINATION OF GEAR PRINCIPAL CURVATURES AND DIRECTIONS

SUBROUTINE PRING2(KS2,G2,E21fx,E21fy,E21f2z,E211fx,E211fy,E211f2)
IMPLICIT REAL*8 (A-H,K,M-2)

CHARACTER*8 HG

COMMON/AO/HG

COMMON/A2/SG,CSRT2,QG, SNPSIG,CSPSIG

COMMON/A3/TND1, TND2,RITAG
COMMON/A4/CSD2,SND2,CSPIT2,SNPIT2
COMMON/B2/CSPIT1,SNPIT1,MP1,MG2,QP

COMMON/B3/Bfx,Bfy,Bf2
COMMON/B4/CSPH2,SNPH2,CSPH21, SNPH21
COMMON/C1/UG,CSTAUG, SNTAUG

COMMON/C2/Nfx ,Nfy,Nfz

KGI=-CSPSIG/ (UG*SNPSIG)

KGI1=0.D0O0

EGIfx=SND2*SNTAUG

EGIfy=CSTAUG

EGIfz=-CSD2*SNTAUG

CALL ROTATE(EGII1fx,EGIIfy,EGIIfz,EGIfx,EGIfy,EGIfz,RITAG,

. Nfx,Nfy,Nfz)

% CALCULATE W2G

%

%

IF(HG .EQ. 'L')THEN
W2£x=-SNPIT2
WGEx=-MG2*CSD2
W2fy=0.D00
WGEy=0.D00
W2f2z=CSPIT2
WGfz=-MG2*SND2
ELSE
W2£x=SNPIT2
WGEx=MG2*CSD2
W2£fy=0.D00
WGEy=0.D00
W2£2=-CSPIT2
WGEZz=MG2*SND2
END IF

W2GEx=W2fx-WGEx
W2GEy=W2fy-WGEy
W2Gfz=W2£f2-WGf2z

* CALCULATE VT2, VTG, AND VT2G

*

CALL CROSS(VT2fx,VT2fy,VT2f2,W2fx,W2fy,W2f2,Bfx,Bfy,Bfz)
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CALL CROSS(VTGEx,VIGfy,VTIGfz,WGEx,WGfy,WGEfz,Bfx,Bfy,Bf2)
VT2GEx=VT2£x-VTGEx
VT2Gfy=VT2fy-VIGfy
VT2GE2=VT2£2-VTGf2

CALCULATE V(2G)GI AND V(2G)GII

CALL DOT(VGI,EGIfx,EGIfy,EGIfz,VT2Gfx,VT2Gfy, VT2GE2)
CALL DOT(VGII,EGIIfx,EGIIfy,EGIIfz,VI2GEx,VT2GEy,VT2GEz)

CALCULATE Al13,A23,A33

CALL DET(DETI,WZGfx,WZny,WZGfZ,fo,ny,Nfz,EGIfx,EGIfy,EGIfZ)
Al3=-KGI*VGI-DETI .
CALL DET(DETII,W2GEx,W2Gfy,W2GEz,Nfx,Nfy,Nfz,EGIIfx,EGIIfy,EGIIf2)
A23=-KGII*VGII-DETII
CALL DET(DET3,Nfx,Nfy,Nfz,W2Gfx,W2GEy,W2GEz, VT2GEx, VT2GEy, VT2GE2)
CALL CROSS(Cx,Cy,Cz,W2fx,W2fy,W2fz,VIGEx, VIGEy, VIGEZ)
CALL CROSS (Dx,Dy,Dz,WGEx,WGEy,WGEz, VT2Ex, VI2fy,VT2£2)
CALL DOT(DET45,Nfx,Nfy,Nfz,Cx-Dx,Cy-Dy,Cz-Dz)
A33=KGI*VGI*VGI+KGII*VGII1*VGII-DET3-DET45

CALCULATE SIGMA

P=A23*A23-A13*A13+ (KGI-KGII) *A33
SIGDBL=DATAN (2.D00*A13%A23/P)
SIGMA=0.5D00*SIGDBL

CALCULATE K2I AND K2II

T1=P/ (A33*DCOS (SIGDBL))
T2=KGI+KGII- (A13*A13+A23%A23) /A33
K2I=(T1+T2)/2.D00
K211=(T2-T1)/2.D00

CALCULATE E21 AND E2I1I

CALL ROTATE(E2Ifx,E21fy,E21fz,EGIfx,EGIfy,EGIf2z,-SIGMA,Nfx, Nfy,
. Nfz)

CALL ROTATE(E211fx,E211fy,E211f2,E21fx,E2Ify,E21fz,RITAG,

. Nfx,Nfy,Nfz)

END

FOR THE DETERMINATION OF PINION PRINCIPAL CURVATURES AND DIRECTIONS

SUBROUTINE PRINP1(KS1,Gl,E11fx,ElI1fy,E11f2,E1I1fx,E1I1Ify,E11Ifz2)
IMPLICIT REAL*8(A-H,K,M-Z)

REAL*8 TPAR(19),LM

CHARACTER*8 HG

COMMON/T1/TPAR

COMMON/AO/HG

COMMON/A3/TND1,TND2,RITAG
COMMON/B1/CSPH11,SNPH11,SP,EM,LM,CSRT1,CSD1,SND1,CSPSIP,SNPSIP
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COMMON/B2/CSPITL,SNPIT1,MP1,MG2,QP

COMMON/B3/Bfx,Bfy,Bfz

COMMON/C2/Nfx ,Nfy,Nfz

COMMON/D1/UP,CSTAUP, SNTAUP

KPI=CSPSIP/ (UP*SNPSIP)

KPII=0.D00O

EPIfx=SND1*SNTAUP

EPIfy=CSTAUP

EPIfz=CSD1*SNTAUP

CALL ROTATE(EPII1fx,EPI1fy,EPIIf2,EPI1fx,EPIfy,EPI£fz,RITAG,

. Nfx,Nfy,Nfz)

CALCULATE W1P

IF(HG .EQ. ‘'L')THEN
W1fx=-SNPIT1
WPfx=—MP1*CSDI
W1fy=0.D00
WPEy=0.D00
W1fz=-CSPIT!
WPf2z=MP1*SND1

ELSE
W1fx=SNPIT1
WP£x=MP1*CSD1
W1£y=0.D00
WP£y=0.D00
W1fz=CSPITI
WPEz=-MP1%*SND1

END IF

WIPEx=W1fx-WPfx

WIPfy=W1lfy-WPfy

WI1Pfz=W1lfz-WPfz

* CALCULATE VT2, VTG, AND VT2G

ELSE

CALL CROSS(VT1lfx,VTlfy,VTlfz,Wlfx,Wlfy Wifz,Bfx,Bfy,Bfz)
CALL CROSS(VTPlfx,VTP1fy,VIP1fz,WPfx,WPfy,WPfz,Bfx,Bfy,Bfz)
IF(HG .EQ. 'L')THEN

CALL CROSS(VTP2fx,VTP2fy,VIP2fz,TPAR(18) ,EM,TPAR(19),
WPfx,WPfy,WPfz)

CALL CROSS(VTP2fx,VTP2fy,VTP2fz,TPAR(18),-EM, TPAR(19),
WPEx ,WPfy,WPf2)

END IF

VIPEx=VTP1fx+VTP2fx

VIPfy=VTPlfy+VIP2fy

VTPfz=VTP1£f2+VTP2£f2

VTIPfx=VT1fx-VTIPfx

VTIPfy=VT1fy-VIPfy

VT1Pf2=VT1£f2-VTPfz
CALL DOT(VPI,EPIfx,EPIfy,EPIfz,VT1Pfx,VT1Pfy,VT1P£f2)
CALL DOT(VPII,EPIIfx,EPIIfy,EPIIf VTIPfx,VT1Pfy,VT1Pfz)
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CALL DET(DETI,W1Pfx,W1Pfy,Wl1Pfz,Nfx,Nfy, Nfz,EPIfx,EPIfy,EPIfz)

Al3=-KPI*VPI-DETI

CALL DET(DETII,W1Pfx,WlPfy,WlPfz,Nfx,Nfy,Nfz,
EPIIfx,EPIIfy,EPIIfz)

A23=-KPII*VPII-DETII

CALL DET(DET3,Nfx,Nfy,Nfz,WlPfx,W1Pfy,WlPfz,

. VT1Pfx,VT1Pfy,VT1Pf2)

CALL CROSS(Cx,Cy,Cz,W1fx,0.D00,W1fz,VTPfx,VIPfy,VIPf2)
CALL CROSS(Dx,Dy,Dz,WPfx,0.D00,WPfz,VT1fx,VT1fy,VT1£2)
CALL DOT(DET45,Nfx,Nfy,Nfz,Cx-Dx,Cy-Dy,Cz-Dz)
A33=KPI*VPI*VPI+KPII*VPII*VPII-DET3-DET45

CALCULATE SIGMA

P=A23%A23-A13%A13+ (KPI-KPII) *A33
SIGDBL=DATAN (2.D00*A13%A23/P)
SIGMA=0.5D00*SIGDBL

CALCULATE K1I AND KI1II

G1=P/ (A33*DCOS (SIGDBL))
KS1=KPI+KPII-(A13%A13+A23%423)/A33
K1I=(KS1+G1)/2.D00
K1II=(KS1-G1)/2.D00

* CALCULATE E1I AND El1I

x*

*

3%

%

g
¥

FOR

FOR

CALL ROTATE(E11fx,E11fy,E11f2,EPIfx,EPIfy,EPIfz,-SIGMA,Nfx,Nfy,
. Nfz)

CALL ROTATE(E1IIfx,E111fy,E111fz,E11fx,E11fy,E11f2z,RITAG,

. Nfx ,Nfy,Nfz)

END

THE DETERMINATION OF THE ANGLE BETWEEN GEAR PRINCIPAL DIRECTIONS
PINION PRINCIPAL DIRECTIONS

SUBROUTINE SIGAN2(E21fx,E21fy,E21f2z,E211fx,E2I1fy,E2I1fz,E11£x,
. El1fy,E11fz,CS2SIG,SN2SIG,SIGM12)

IMPLICIT REAL*8(A~H,K,M-2)

CALL DOT(CSSIG,El11fx,E11fy,E11f2z,E21£x,E21fy,E21£fZ)

CALL DOT(SNSIG,E11fx,E11fy,E11fz,-E211fx,-E211fy,-E211f2)
SIGM2=4.DO0*DATAN (SNSIG/ (1.D00+CSSIG))

SIGM12=,5D00*SIGM2

CS2S1G=DCOS (SIGM2)

SN2SIG=DSIN(SIGM2)

END

THE DETERMINATION OF CONTACT ELLIPS

SUBROUTINE ELLIPS(KS2,G2,KS1,G1,CS2S1G,SN2SIG,DEF,ALFAl,
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AX1SL,AXISS,El1fx,El11fy,E11£2)
IMPLICIT REAL*8(A-H,K,M-2)
COMMON/A3/TND1,TND2,RITAG
COMMON/C2/Nfx ,Nfy,Nfz
COMMON/E1/XBf,YBf,ZBf
D=DSQRT (G1*G1-2.D00*G1*G2*CS251G+G2%*G2)
CS2AF1=(G1-G2*CS2S1G) /D
SN2AF1=G2*SN251G/D
ALFA1=DATAN (SN2AF1/ (1.D0O0+CS2AF1))
A=.25D00*DABS (KS1-KS2-D)
B~.25D00*DABS (KS1-KS§2+D)
IF(KS2 .LT. KS1)THEN
AX1SL~DSQRT (DEF/A)
AX1SS=DSQRT (DEF/B)
CALL ROTATE(XBf,YBf,ZBf,El11fx,E11fy,E11f2,RITAG-ALFA]l ,Nfx,

. Nfy,Nfz)

ELSE

AXISL=DSQRT(DEF/B)

AX1SS=DSQRT(DEF/A)

CALL ROTATE(XBf,YBf,2Bf,Ell1fx,El1fy,E11fz,-ALFAl Nfx, Nfy,

. Nfz)

END IF
XBf=AXISL*XBf
YBf=AXISL*YBE
ZBf=AXISL*ZBf
END

COORDINATE TRANSFORMATION FOR F TO P

SUBROUTINE PF(B2px,B2py,B2pz,Bfx,Bfy,Bfz)
IMPLICIT REAL*8(A-H,K,M-2)
COMMON/A4/CSD2,SND2,CSPIT2,SNPIT2
COMMON/B4/CSPH2, SNPH2,CSPH21,SNPH2!

[(Mwf] = [Mwa] [Maf]

CALL COMBI(wll,wl2,wl3,w2],w22,w23,w31,w32,w33,wl,w2,w3,

. CSPH21,SNPH21,0.D00,-SNPH21,CSPH21,0.D00,0.D00,0.D00, 1.D00,
. 0.D00,0.D00,0.D00,
. CSP1T2,0.D00,SNPIT2,0.D00,1.D00,0.D00,-SNPIT2,0.D00,CSPIT2,
. 0.D00,0.D00,0.D00)

CALL TRCOOR (B2wx,B2wy,B2wz,

cowll,wi2,wi3,w2l,w22,w23,w3!,w32,w33,wl,w2,w3,
. Bfx,Bfy,Bfz)

[Mpw] = [Mpa] [Maw]

CALL COMBI(pll,pl2,pl3,p21,p22,p23,p31,p32,p33,pl,p2,p3,

. CSPIT2,0.D00,-SNPIT2,0.D00,1.D00,0.D00,SNPIT2,0.D00,CSPIT2,
. 0.D00,0.D00,0.D00,

. CSPH2,-SNPH2,0.D00, SNPH2,CSPH2,0.D00,0.D00,0.D00,1.D00,

. 0.D00,0.D00,0.D00)

CALL TRCOOR(BZPX,BZPYQBZPZQ
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. pll,pl2,p13,p21,p22,p23,p31,p32,p33,pl,p2,p3,
. B2wx,B2wy,B2wz)

END

* USING EULER FORMULA TO DETERMINATION SURFACE INTERFERENCE

SUBROUTINE EULER(KS2,G2,KS1,G1,CS2S1G,SN2S1G, IEU)
IMPLICIT REAL*8 (A-H,K,M-2Z)
T=KS2-KS1
U=DSQRT ((G2~G1*CS2SIG) **2+ (G1*SN2S1G) **2)
KR1=(T+U) /2.D0O0
KR2=(T-U)/2.D00
IF(KR1*KR2 .LT. 0.D0Q)THEN
1EU=1
ELSE
1EU=0
END IF
END

DETERMINANT

SUBROUTINE DET(S,A,B,C,D,E,F,G,H,P)
IMPLICIT REAL*8(A-H,K,M-Z)
S‘A*E*P+D*H*C+G*B*F‘A*H*F‘D*B*P_G*E*C
RETURN

END

COORDINATE TRANSFORMATION

SUBROUTINE TRCOOR (XN,YN,ZN,R11,R12,R13,R21,R22,R23,R31,R32,R33,
T1,T2,T3,XP,YP,ZP)

IMPLICIT REAL*8(A-H,0-2)

XN=R11*XP+R12*YP+R13%*ZP+T]

YN=R21*XP+R22*YP+R23*2ZP+T2

ZN=R31*XP+R32*YP+R33%*ZP+T3

RETURN

END

MULTIPLICATION OF TWO TRANSFORMATION MATRICES

SUBROUTINE COMBI(C11,C12,C13,C21,C22,C23,C31,C32,C33,C1,C2,C3,
All,A12,A13,A21,A22,A23,A31,A32,A33,A1,A2,A3,
Bl1,B12,B13,B21,B22,B23,B31,B32,B33,B1,B2,B3)

IMPLICIT REAL*8 (A-H,M,N,0-2)

C11=B31%*A13+B21*A12+B11*All
C12=B32*A13+B22*A12+B12*Al1
C13=B33%A13+B23%A12+B13*All
C21=B31*%A23+B21%*A22+B11*A21]
C22=B32*A23+B22%A22+B12*A21
C23=B33%A23+B23*A22+B13*A21
C31=B31*A33+B21*A32+B11*A31
C32=B32%A33+B22%*A32+B12*A31
C33=B33*A33+B23*A32+B13*A31
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C1=B3*A13+B2*A12+B1*Al1+A1
C2=B3*A23+B2%*A22+B1*A21+A2
C3=B3%*A33+B2*A32+B1*A31+A3
RETURN

END

OF TWO VECTORS

SUBROUTINE DOT(V,X1,Y1,z1,X2,Y2,22)
IMPLICIT REAL*8(A-H,0-2)
V=X1*X2+Y1*Y2+21%Z22

RETURN

END

CROSS OF TWO VECTORS

SUBROUTINE CROSS(X,Y,Z,A,B,C,D,E,F)
IMPLICIT REAL*8(A-H,0-2)

X=B*F-C*E

Y=C*D-A*F

Z=A*E-B*D

RETURN

END

* ROTATION A VECTOR ABOUT ANOTHER VECTOR

*

SUBROUTINE ROTATE (XN, YN,ZN,XP,YP,ZP,THETA,UX,UY,UZ)
IMPLICIT REAL*8(A-H,0-2)

CT=DCOS (THETA)

ST=DSIN (THETA)

VT=1.D00-CT

R11=UX*UX*VT+CT

R12=UX*UY*VT-UZ*ST

R13=UX*UZ*VT+UY*ST

R21=UX*UY*VT+UZ*ST

R22=UY*UY*VT+CT

R23=UY*UZ*VT-UX*ST

R31=UX*UZ*VT-UY*ST

R32=UY*UZ*VT+UX*ST

R33=UZ*UZ*VT+CT

CALL TRCOOR (XN,YN,ZN,R11,R12,R13,R21,R22,R23,R31,R32,R33,
0.D00,0.D00,0.D00,

. XP,YP,ZP)

RETURN
END

**k%%*  SUBROUTINE NOLIN k%

SUBROUTINE NONLIN (FUNC,NSIG,NE,NC,X,Y,Yl,DELTA,A, IPVT,WORK)
IMPLICIT REAL*8(A-H,0-2)

DIMENSION X(NE),Y(NE),Y1(NE),A(NE,NE),IPVT(NE) ,WORK (NE)
EXTERNAL FUNC

NDIM=NE
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EPSI=1.D00/10.DO0**NSIG

CALL NONLIO(FUNC,EPSI,NE,NC,X,DELTA,NDIM,A,Y, Y1 WORK, IPVT)
RETURN

END

=

kidkdkk  SUBROUTINE NOLINO  Hiededki

SUBROUTINE NONLIO(FUNC,EPSI,NE,NC,X,DELTA,NDIM,A,Y,Y1,WORK, IPVT)
IMPLICIT REAL™8(A-H,0-2)
DIMENSION X(NE),Y(NE),Y1(NE),IPVT(NE) ,WORK(NE) ,A(NDIM,NE)
EXTERNAL FUNC
* NC: ##f OF COUNT TIMES
DO 5 I=1,NC
CALL FUNC(X,Y,NE)
* NE: f#f OF EQUATIONS

DO 15 J~1,NE
IF (DABS(Y(J)).GT.EPSI) GO TO 25

15 CONTINUE
GO TO 105

25 DO 35 J=1,NE

35 Y1(I) =Y ()
DO 45 J=1,NE
DIFF=DABS (X (J)) *DELTA
IF (DABS(X(J)).LT.1.D-12) DIFF=DELTA
XMAM=X (J)
X(J)=X(J)-DIFF
CALL FUNC(X,Y,NE)
X (J) =XMAM
DO 55 K=1,NE
A(K,J)=(Y1(K)-Y(K)) /DIFF

55 CONTINUE

45 CONTINUE
DO 65 J=1,NE

65 Y(J)=-Y1(J)
CALL DECOMP (NDIM,NE,A,COND, IPVT,WORK)
CALL SOLVE (NDIM,NE,A,Y,IPVT)

DO 75 J=1,NE
X=X +Y(D)
75 CONTINUE
5 CONTINUE
105 RETURN
END

%

Yededede SUBROUTINE DECOMP Yedededek

SUBROUTINE DECOMP (NDIM,N,A,COND, IPVT,WORK)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(NDIM,N),WORK(N),IPVT(N)

DECOMPOSES A REAL MATRIX BY GAUSSIAN ELIMINATION,
AND ESTIMATES THE CONDITION OF THE MATRIX.

* % %+ ¥
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—COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS-, BY G. E. FORSYTHE,

M. A. MALCOLM, AND C. B. MOLER (PRENTICE-HALL, 1977)

USE SUBROUTINE SOLVE TO COMPUTE SOLUTIONS TO LINEAR SYSTEM.

INPUT..
NDIM = DECLARED ROW DIMENSION OF THE ARRAY CONTAINING A
N = ORDER OF THE MATRIX
A = MATRIX TO BE TRIANGULARIZED

OUTPUT. .

A CONTAINS AN UPPER TRIANGULAR MATRIX U AND A PREMUTED
VERSION OF A LOWER TRIANGULAR MATRIX I-L SO THAT
(PERMUTATION MATRIX) *A=L*U

COND = AN ESTIMATE OF THE CONDITION OF A.
FOR THE LINEAR SYSTEM A*X = B , CHANGES IN A AND B
MAY CAUSE CHANGES COND TIMES AS LARGE IN X,
IF COND+1.0 .EQ. COND , A IS SINGULAR TO WORKING
PRECISION. COND IS SET TO 1.0D+32 1IF EXACT
SINGULARITY IS DETECTED.

IPVT = THE PIVOT VECTOR
IPVT(K) = THE INDEX OF THE K-TH PIVOT ROW
IPVT(N) = (~1)**(NUMBER OF INTERCHANGES)
WORK SPACE.. THE VECTOR WORK MUST BE DECLARED AND INCLUDED

IN THE CALL. ITS INPUT CONTENTS ARE IGNORED.
ITS OUTPUT CONTENTS ARE USUALLY UNIMPORTANT.

THE DETERMINANT OF A CAN BE OBTAINED ON OUTPUT BY
DET(A) = IPVT(N) * a(l,1) * A(2,2) * ... * A(N,N)

IPVT(N) =1
IF (N.EQ.1) GO TO 150
NM1=N-1
COMPUTE THE 1-NORM OF A .
ANORM=0.D0
DO 20 J=1,N
T=0.D0
DO 10 I=1,N
10 T=T+DABS(A(I1,J))
IF (T.GT.ANORM) ANORM=T
20 CONTINUE
DO GAUSSIAN ELIMINATION WITH PARTIAL

PIVOTING.
DO 70 K=1,NM1
RP1=K+1
FIND THE PIVOT.
M=K

DO 30 I=KP1,N




*

e

IF (DABS(A(I,K)).GT.DABS(A(M,K))) M=I
30 CONTINUE
IPVT (K) =M
IF (M.NE.K) IPVT(N)=-IPVT(N)
T=A(M,K)
AM,K)=A(K,K)
AKK,K)=T

SKIP THE ELIMINATION STEP IF PIVOT IS ZERO.

IF (T.EQ.0.DO) GO TO 70

COMPUTE THE MULTIPLIERS.
DO 40 I=KP1,N
40 A(I,RK)=-A(I,K)/T
INTERCHANGE AND ELIMINATE BY COLUMNS.
DO 60 J=KP1,N
T=A(M,J)
AM,0)=A(,T)
AR, ID=T
IF (T.EQ.0.D0) GO TO 60
DO 50 I=KP1,N
50 AL, =A(1, D+A(I,K)*T
60  CONTINUE
70 CONTINUE

COND = (1-NORM OF A)* (AN ESTIMATE OF THE 1-NORM OF A-INVERSE)

THE ESTIMATE IS OBTAINED BY ONE STEP OF INVERSE ITERATION FOR THE
SMALL SINGULAR VECTOR. THIS INVOLVES SOLVING TWO SYSTEMS

OF EQUATIONS, (A-TRANSPOSE)*Y = E AND A*Z = Y WHERE E

IS A VECTOR OF +1 OR ~1 COMPONENTS CHOSEN TO CAUSS GROWTH IN Y.
ESTIMATE = (1-NORM OF Z)/(1-NORM OF Y)

SOLVE (A-TRANSPOSE)*Y = E .
DO 100 K=1,N
T=0.D0
IF (K.EQ.1) GO TO 90
KM1=K-1
DO 80 I=1,KM1
80 T=T+A(I,K)*WORK{I)

90 EK=1.DO
IF (T.LT.0.DO) EK=-1.DO

IF (A(K,K).EQ.0.D0O) GO TO 160
All=a(1,1)
WORK(K)=-(EK+T) /A(1,1)
100 CONTINUE
DO 120 KB=1,NM1
K=N-KB
T=0.D0
KP1=K+1
DO 110 I=KP1,N
110  T=T+A(I,K)*WORK (K)

161




%

¥

*

%*

%

¥ % % % % %

% % % % ¥ % % % %

120

130

140

150

160

WORK (K) =T
M=IPVT (K)
IF (M.EQ.K) GO TO 120
T=WORK (M)
WORK (M) =WORK (K)
WORK (K) =T
CONTINUE

YNORM=0.D0O
DO 130 I=1,N
YNORM=YNORM+DABS (WORK (I))

SOLVE A*Z =Y
CALL SOLVE (NDIM,N,A,WORK, IPVT)

ZNORM=0.D0
DO 140 I=1,N
ZNORM=ZNORM+DABS (WORK (I))

ESTIMATE THE CONDITION.
COND=ANORM*ZNORM/ YNORM
IF (COND.LT.1.D0) COND=1.D0O
RETURN
1-BY-1 CASE..
COND=1.D0
IF (A(1,1).NE.0.DO) RETURN

EXACT SINGULARITY
COND=1.0D32
RETURN
END

SUBROUTINE SOLVE (NDIM,N,A,B,IPVT)

IMPLICIT REAL*8 (A-H,0-2)
DIMENSION A(NDIM,N),B(N),IPVT(N)

SOLVES A LINEAR SYSTEM, A*X = B

DO

NOT SOLVE THE SYSTEM IF DECOMP HAS DETECTED SINGULARITY.

-~COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS-, BY G. E. FORSYTHE,

M. A. MALCOLM, AND C. B. MOLER (PRENTICE-HALL, 1977)

INPUT..
NDIM = DECLARED ROW DIMENSION OF ARRAY CONTAINING A
N = ORDER OF MATRIX _
A = TRIANZULARIZED MATRIX OBTAINED FROM SUBROUTINE DECOMP
B = RIGHT HAND SIDE VECTOR
IPVT = PIVOT VECTOR OBTAINED FROM DECOMP
OUTPUT. .
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20

30
40
50

B = SOLUTION VECTOR,

IF (N.EQ.1) GO TO 50
NM1=N-1
DO 20 K=1,NMl
KP1=K+1
M=IPVT (K)
T=B (M)
B(M)=B(K)
B(R)=T
DO 10 I=KP1,N
B(I)=B(I)+A(I,K)*T
CONTINUE

DO 40 KB=1,NMl
KM1=N-KB
K=KM1+1
B(K) =B (K) /A(K,K)
T=-B (K)

DO 30 I=1,KMl
B(I)=B(I)+A(I,K)*T

CONTINUE

B(1)=B(1)/A(1,1)

RETURN

END

X

DO THE FORWARD ELIMINATION.

NOW DO THE BACK SUBSTITUTION.
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* Curved Blade to Cut the Pinion
*

e 3 3 3¢ Je e sl v o o Ve e e v dk e e s e S e o sl de e de s e ok e sk sk e st vt e e T st de st b sk sk e b ke sk b kb ok e sk sk ek kb ek ok

IMPLICIT REAL*8(A-H,K,M-2)

REAL*8 X(1),F(1l),FI(1),PAR(6),LM,TX(6),TF(6),TF1(6),TPAR(19),
. AZSP(1,1) ,WORKP (1) ,AZS(6,6) ,WORK(6) ,LANDAP, LANPDG, LANDPQ
CHARACTER*8 HG,HNGR

DIMENSION IPVT(6),IPVTIP(1)

EXTERNAL PCN1,PCN2,TCN

COMMON/P1/PAR

COMMON/T1/TPAR

COMMON/AOQ/HG
COMMON/Al/pll1,pl2,p13,p21,p22,p23,p31,p32,p33,p1,p2,p3
COMMON/A2/SG,CSRT2,QG, SNPSIG,CSPSIG
COMMON/A3/TND1,TND2,RITAG

COMMON/A4/CSD2,SND2,CSPIT2,SNPIT2

COMMON/AS5/CSQG, SNQG, THETAG
COMMON/B1/CSPH11,SNPH11,SP,EM,LM,CSRT1,CSD1,SND1,CSLANP, SNLANP
COMMON/B2/CSPIT1,SNPIT1,MP1,MG2,QP

COMMON/B3/B2£fx,B2fy,B2fz

COMMON/B4/CSPH2, SNPH2,CSPH21,SNPH21

COMMON/B5/XCR, ZCR

COMMON/C1/UG, CSTAUG, SNTAUG

COMMON/C2/N2fx,N2fy,N2fz

COMMON/D1/CSTAUP, SNTAUP

COMMON/E1/XBf,YBf,ZBf

COMMON/F1/PHIGO

COMMON/G1/DA1,DV1

Gleason's Spiral Bevel Gears

Basic Machine-Tool Settings and Tooth Contact Analysis

% % A 3k % %

*

o,
w

INPUT THE DESIGN DATA

% %

* TN1 : number of pinion teeth

E sec. 3.1

* TN2 : number of gear teeth

* o mmee— sec. 3.1

* RTldg, RTlmin : root angle of pinion (degree and arc minute, respec-
* tively)

oo e sec. 3.1

* RT2dg, RT2min : root angle of gear (degree and arc minute, respec-
* tively)

Lo sec. 3.1

* SHAFdg : shaft angle (degree)

* e sec. 3.1

* BETAdg : mean spiral angle (degree)
e sec. 3.1

* ADIA : average gear cutter diameter
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----- sec. 3.1
W : point width of gear cutter
----- sec. 3.1
A : mean cone distance
----- sec. 3.1
ALPHdg : blade angle of gear cutter (degree)
----- sec. 3.1
radius of blade
gear convex side
----- fig. 10
RV ¢ radius of blade
gear concave side
----- fig. 10
angle measured counterclockwise from root of gear to
the tangent of the contact path (degree)
gear convex side
————— fig. 19
angle measured counterclockwise from root of gear to
the tangent of the contact path (degree)
gear concave side
————— fig. 19
first derivative of gear ratio
gear convex side
----- sec. 3.1.1
first derivative of gear ratio
gear concave side
----- sec. 3.1.1
semimajor axis of contact ellipse
gear convex side
----- eq. (3.76)
semimajor axis of contact ellipse
gear concave side
----- eq. (3.76)
HNGR : hand of gear ('L' or 'R')
DA : amount of shift along pinion axis
+ : pinion mounting distance being increased
- : pinion mounting distance being decreased
amount of pinion shaft offset
the same sense as yf shown in fig. 18
elastic approach
————— eq. (3.76)
EPS ¢ amount to control calculation accuracy

RX

DLTXdg

DLTVdg

M21XPR

M21VPR

AXILX

AXILV

DV

DEF

OUTPUT OF THE BASIC MACHINE-TOOL SETTINGS

PSIGdg : gear blade angle

PS1Pdg : pinion blade angle

RG : tip radius of gear cutter
RP : tip radius of pinion cutter
SG ¢ gear radial

SP ¢ pinion radial

QGdg : gear cradle angle

QPdg : pinion cradle angle
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"k MG2 : gear cutting ratio

* MP1 : pinion cutting ratio

* EM : machining offset

* LM : machine center to back + sliding base
* XCR, ZCR :+ x and z coordinates of center of blade

DATA TN1,TN2/10.D00,41.D00/
DATA RTldg,RTlmin/12.D00,1.D00/
DATA RT2dg,RT2min/72.D00,25.D00/
DATA SHAFdg,BETAdg/90.D00,35.D00/
DATA ADIA/6.0D00/

DATA W/0.08D00/

DATA A/3.226D00/

DATA ALPHdg/20.D00/

DATA DLTXdg/ 90.D00/

DATA DLTVdg/ 75.D00/

DATA M21XPR/-3.5D-03/

DATA M21VPER/5.2D-03/

DATA AXILX/0.1710D00/

DATA AXILV/0.1810D00/

DATA RX/40.00D00/

DATA RV/50.00D00/

DATA HNGR/'L'/

DATA DA,DV/0.D00,0.D00/

DATA DEF/0.00025D00/

DATA EPS/1.D-12/

J

DAl1=DA
DV1=DV
HG=HNGR

* CONVERT DEGREES TO RADIANS
CNST=4.DO0*DATAN (1.D00) /180.D00
RITAG=90.DO0*CNST
DLTX=DLTXdg*CNST
DLTV=DLTVdg*CNST
RT1=(RT1dg+RT1min/60.D00) *CNST
RT2=(RT2dg+RT2min/60.D00) *CNST
BETA=BETAdg*CNST
PSIG=ALPHdg*CNST
SHAFT=SHAFdg*CNST
CSRT2=DCOS (RT2)
SNRT2=DSIN(RT2)

CSRT1=DCOS (RT1)
SNRT1=DSIN(RT1)
%*

* CALCULATE PITCH ANGLES
*

MM21=TN1/TN2
c ————-— eq. (3.1)
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PITCH2=DATAN (DSIN (SHAFT) / (MM21+DCOS (SHAFT)))
IF(PITCH2 .LT. 0.D00) THEN
PITCH2=PITCH2+180.D00

END IF

CSPIT2=DCOS (PITCH2)

SNPIT2=DSIN(PITCH2)

c ————- eq. (3.2)
PITCH1=SHAFT-PITCH2
CSPIT1=DCOS(PITCH1)
SNPIT1=DSIN(PITCH1)

%

* CALCULATE DEDENDUM ANGLES

%*

¢ ———-- eq. (3.3)
D1=PITCH1-RT1
D2=PITCH2-RT2
CSD1=DCoS (D1)
SND1=DSIN(D1)
TND1=SND1/CSD1
CSD2=DCOS (D2)
SND2=DSIN(D2)
TND2=SND2/CSD2

%

* CALCULATE GEAR CUTTING RATIO

c ~~——- eq. (3.7)
MG2=DSIN (PITCH2) /CSD2
*

* FOR GEAR CONVEX SIDE I = 1, FOR GEAR CONCAVE SIDE I = 2,
DO 99999 I=1,2
IF(I .EQ. 1)THEN
WRITE(72,%*) 'GEAR CONVEX SIDE'
DLTA=DLTX
M21PRM=M21XPR
AXIL=AXILX
R=RX
ELSE
WRITE(72,%*) 'GEAR CONCAVE SIDE'
DLTA=DLTV
M21PRM=M21VPR
AXIL=AXILV
R=RV
END IF
WRITE(72,%)
c ----= eq. (3.76)
AXIA=DEF/ (AXIL*AXIL)
%

* CALCULATE GEAR BLADE ANGLE
c ————~ sec. 2.2

IF(1 .EQ. 2)THEN
PSIG=180.DO0*CNST-PSIG
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b

END IF
CSPSIG=DCOS (PSIG)
SNPSI1G=DSIN(PSIG)
CTPSIG=CSPSIG/SNPSIG

CALCULATE CUTTER TIP RADIUS

————— eq. (3.8)
IF(I .EQ. 1)THEN
RG=(ADIA-W)/2.D00
ELSE
RG= (AD1A+W) /2.D00
END IF

CALCULATE RADIAL

----- eq. (3.9)
IF(I .EQ. 1)THEN
SG=DSQRT(ADIA*ADIA/A.D00+A*A*CSDZ*CSDZ-A*ADIA*CSDZ*DSIN(BETA))

CALCULATE CRADLE ANGLE

----- eq. (3.10)
QG=DACOS((A*A*CSDZ*CSD2+SG*SG—ADIA*ADIA/4.DOO)/(2.D00*A*SG*CSD2))
CSQG=DCOS (QG)

SNQG=DSIN (QG)
END IF

PAR (1) =RG*CTPSIG*CSPSIG
PAR (4)=PG*CTPSIG

CALCULATE PHIG

PHIG=0,D0ON
PHIGO=PHIG
CSPHIG=DCOS (PHIG)
SNPHIG=DSIN (PHIG)

IF (HG .EQ. 'L')THEN

IF(I .EQ. 1)THEN

Mmc=Mms*Msc
----- eq. (2.26)

CALL COMBI(m11,m12,m13,m21,m22,m23,m31,m32,m33,m1,m2,m3,
l.DO0,0.DO0,0.DO0,0.DOO,CSPHIG,SNPHIG,O.DOO,‘SNPHIG,CSPHIG,
0.D00,0.D00, 0.DO0,
1.DO0,0.DO0,0.DO0,0.DOO,CSQG,—SNQG,O.DOO,SNQG,CSQG,
0.D00, ~SG*SNQG, SG*CSQG)

END IF

* Mpc=Mpm*Mmc

----- eqs. (2.25), (3.13)
CALL CoMBI{pll,pl2,pl3,p21,p22,p23,p31,p32,p33,pl,p2,p3,
€sD2,0.D00,-SND2,0.D00, 1.D00, 0.DOO, SND2,0.D00,CSD2,
0.D00,0.D00,0.D00,
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mll,ml2,m13,m21,m22,m23,m31,m32,m33,m1,m2,m3)

¥

ELSE

IF(1 .EQ. 1)THEN
* Mmc=Mms*Msc
c ———-- eq. (2.26)

CALL COMBI(mll,ml12,ml3,m21,m22,m23,m31,m32,m33,ml,m2,m3,
1.D000,0.D00,0.D00,0.D00,CSPHIG,~-SNPHIG,0.D00, SNPHIG,CSPHIG,
0.D000,0.D00,0.D00,
1.D000,0.D00,0.D00,0.D00,CSQG, SNQG, 0.D00, -SNQG, CSQG,
0.D00, SG*SNQG, SG*CSQG)

END IF
* Mpc=Mpm*Mmc
e —-—-- eqs. (2.25), (3.13)

CALL COMBI(pll,pl2,pl3,p21,p22,p23,p31,p32,p33,p1,p2,p3,
Ccsb2,0.D00,~-SND2,0.D00, 1.D00,0.D00, SND2,0.D00,CSD2,
0.000,0.D000,0.D00,
mll,ml2,m13,m21,m22,m23,m31,m32,m33,ml,m2,m3)

END IF

-
o

DETERMINE MAIN CONTACT POINT

CALCULATE THETAG

c ———-= X(1) represents THETAG
PAR (2)=(MG2-SNRT2) *CSPSIG
IF(HG .EQ. 'L')THEN
PAR (3) =-SNQG*CSRT2*SNPS1G
¢ ————- step 1 in sec. 3.2
X (1) =QG-BETA+RITAG
ELSE
PAR (3) =SNQG*CSRT2*SNPSIG
¢ ——--= step 1 in sec. 3.2
X (1) =- (QG-BETA+RITAG)
END IF
CALL NONLIN(PCN1,14,1,100,X,F,FI,1.D-5,42ZSP,IPVTP,WORKP)
THETAG=X (1)
CSTHEG=DCOS (THETAG)
SNTHEG=DSIN (THETAG)
%

* CALCULATE TAUG
¥*
c ———-- eq. (2.38)
IF(HG .EQ. 'L')THEN
TAUG=THETAG-QG+PHIG
ELSE
TAUG=THETAG+QG-PHIG
END IF
CSTAUG=DCOS (TAUG)
SNTAUG=DSIN (TAUG)

*
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%

CALCULATE UG

----- eq. (2.43)

IF(HG .EQ. 'L')THEN

UG=RG*CTPSIG*CSPSIG-SG* ((MG2~SNRT2) *CSPSIG*SNTHEG-DSIN (QG-PHIG) *
# CSRT2*SNPSIG) / (CSRT2*SNTAUG)

ELSE

UG=RG*CTPSIG*CSPSIG-SG* ((MG2~SNRT2) *CSPSIG*SNTHEG+DSIN (QG-PHIG) *
# CSRT2*SNPSIG) / (CSRT2*SNTAUG)

END IF

CONVERT RADIAN TO DEGREE

PSIGDG=PSIG/CNST
TAUGDG=TAUG/CNST
QGDG=QG/CNST
THEGDG=THETAG/CNST
PHIGDG=PHIGO/CNST

OUTPUT OF GEAR SETTINGS
WRITE(72,10000) PSIGDG, QGDG,RG, SG,MG2, TAUGDG, UG, THEGDG, PHIGDG
CALCULATE MAIN CONTACT POINT

————— eq. (2.1)
Bcx=RG*CTPSIG~UG*CSPSIG
Bcy=UG*SNPSIG*SNTHEG
Bcz=UG*SNPSIG*CSTHEG
————— eq. (2.2)
Ncx=SNPSIG
Ncy=CSPSIG*SNTHEG
Ncz=CSPSIG*CSTHEG
----- eq. (2.9)
EGIex=0.D00
EGIcy=CSTHEG
EGIcz=-SNTHEG
----- eq. (3.13)
CALL TRCOOR (Bpx,Bpy,Bpz,
. pll,pl2,pl13,p21,p22,p23,p31,p32,p33,p1,p2,p3,
. Bex,Bcy,Bcz)
----- eq. (3.16)
CALL TRCOOR (Npx,Npy,Npz,
. pll,pl2,pl13,p21,p22,p23,p31,p32,p33,0.D00,0.D00,0.D00,
. Ncx,Ncy,Ncz)
----- eq. (3.17)
CALL TRCOOR (EGIpx,EGT :y,EGlpz,
. pll,pl2,pl3,p21,p22,p23,p31,p32,p33,0.D00,0.D00,0.D00,
EGlcx,EGIcy,EGIcz)
----- fig. 18 & sec. 3.3
Bfx=Bpx
2fy=Bpy
Bfz=Bpz
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Nfx=Npx
Nfy=Npy
Nfz=Npz
EGIfx=EGIpx
EGIfy=EGIpy
EGIfz=EGIpz

* CALCULATE LANDAP

o,

UG0=UG
CSTAGO=CSTAUG
SNTAGO=SNTAUG
PHIGO=PHIG
THETGO=THETAG

DO 99999 J=1,2
CSTAUG=CSTAGO
SNTAUG=SNTAGO
UG=UGO
PHIG=PHIGO
THETAG=THETGO

IF(J .EQ. 1) THEN
WRITE(72,%*) 'BLADE CONCAVE DOWN'
ELSE
WRITE(72,%) 'BLADE CONCAVE UP'
END IF
LANDAP=DACOS (CSD1*Nfx~SND1*Nfz)
IF (I .EQ. 1)THEN
IF (J .EQ. 1)THEN
LANDAP=360.D00*CNST~LANDAP
PSIP=450.D00*CNST-LANDAP
ELSE
LANDAP=180.D0O0*CNST-LANDAP
PSIP=270.D00*CNST-LANDAP
END IF
ELSE
IF(J .EQ. 1) THEN
PSIP=90.D00*CNST-LANDAP
ELSE
LANDAP=180.D00*CNST+LANDAP
PSIP=270.D00*CNST-LANDAP
END IF
END IF
CSLANP=DCOS (LANDAP)
SNLANP=DSIN (LANDAP)
%

* CALCULATE TAUP
¥

TAUP=DATANZ (Nfy/SNLANP, (NEx-CSD1*CSLANP) / (-SND1*SNLANP) )
IF(J .EQ. 2)THEN
TAUP=DATAN2 (-Nfy/SNLANP, (-N£x—CSD1*CSLANP) / (-SND1*SNLANP) )
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END IF
CSTAUP=DCOS (TAUP)
SNTAUP=DSIN (TAUP)

%

* CALCULATE PRINCIPAL CURVATURES AND DIRECTIONS OF THE GEAR CUTTER

c ————- eq. (2.10)
KGI=-CTPSIG/UG
c ———-- eq. (2.12)
KG1I1=0.D00
c ———--— the second principal direction is determined by rotating of
c ———-- the first principal derection about unit normal by 90 degrees

CALL ROTATE(EGII1fx,EGIify,EGIIfz,EGIfx,EGIfy,EGIfz,RITAG,
. Nfx,Nfy,Nfz)
* CALCULATE W2G
c ————- egs. (3.18)-(3.20)
IF(HG .EQ. 'L')THEN
W2£x=-SNPIT2
WGEx=-MG2*CSD2
W2fy=0.D00
WGfy=0.D00
W2£2=CSPIT2
WGEZz=-MG2*SND2
ELSE
W2£x=SNPIT2
WGEx=MG2*CSD2
W2fy=0.D00
WGEy=0.D00
W2£z=-CSPIT2
WGEZz=MG2*SND2
END IF

W2GEfx=W2fx-WGEx
W2Gfy=W2fy-WGEy
W2Gfz=W2fz-WGfz

* CALCULATE VT2, VTG, AND VT2G

¢ ————- eq. (3.22)

CALL CROSS(VTfo,VTny,VTZfZ,Wfo,Wny,WZfz,fo,ny,BfZ)
c ——---- eq. (3.21)

CALL CROSS (VTGEx,VTGEy,VTGEz, WGEx,WGEy,WGEz,Bfx,Bfy,Bfz)
c ————- eq. (3.23)

VI2GEx=VT2fx-VTGEfx
VT2Gfy=VT2fy-VTGEy
VT2Gfz=VT2f2z-VTGfz
* CALCULATE V(2G)GI AND V(2G)GII
b3
¢ ——=—- eq. (3.24)
CALL DOT(VGI,EGIfx,EGIfy,EGIfz,VTZGfx,VT2ny,VT2sz)
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c ~———~ eq. (3.25) .
CALL DOT(VGII,EGIIfx,EGIIfy,EGIIfz,VT2GEx, VT2GEy,VT2GEz)
¥

* CALCULATE Al3,A23,A33

&,

c -~ eq. (3.26)
CALL DET(DETI,W2Gfx,W2Gfy,W2Gfz,Nfx ,Nfy,Nfz,EGIfx,EGIfy,EGIfz)
A13=~KGI*VGI-DETI

c ————= eq. (3.27)
CALL DET(DETII,W2Gfx,W2Gfy,W2Gfz,Nfx,Nfy,Nfz,EGI1fx,EGIIfy,EGIIf2)
A23=-KGII*VGII-DETII

c ———-~ eq. (3.28)
CALL DET(DET3,Nfx,Nfy,Nfz,W2Gfx,W2Gfy,W2Gfz,VT2GEx,VT2GEy, VT2GEz)
CALL CROSS (Cx,Cy,Cz,W2fx,W2fy,W2f2,VTGfx,VIGEy,VTGEZ)
CALL CROSS (Dx,Dy,Dz,WGEx,WGfy,WGfz,VT2£fx,VI2fy,VT2£f2)
CALL DOT(DET45,Nfx,Nfy,Nfz,Cx-Dx,Cy-Dy,Cz-Dz)
A33=KGI*VGI*VGI+KGII*VGII*VGII-DET3-DET45

X

* CALCULATE SIGMA

*

c ~————~- eq. (3.29)

P=A23%A23-A13*A13+ (KGI~KGII) *A33
SIGDBL=DATAN (2.D00*A13*A23/P)
S1GMA=0.5D00*SIGDBL

-

* CALCULATE K2I AND K2II

c ~———~- eqs. (3.30)-(3.31)
T1=P/ (A33*DCOS (SIGDBL))
T2=KGI+KGII~(A13%A13+A23%A23)/A33
K2I=(T1+T2)/2.D0O0
K211=(T2-T1)/2.D0O0

* CALCULATE E2I AND E2I1

kie

c ———-- description after eq. (3.29)
CALL ROTATE(E2I1fx,E2ify,E21fz,EGIfx,EGIfy,EGIfz,-SIGMA,Nfx,Nfy,
. Nfz2)

CALL ROTATE(E2IIfx,E2I1fy,E211fz,E21fx,E21fy,E21fZz,RITAG,
. Nfx,Nfy,Nfz)

----- eq. (3.44)
TNETAG=DSIN (DLTA+SIGMA) /DCOS (DLTA+SIGMA)

(2}

%

CALCULATE W2

¥

c ~———- eq. (3.33)

IF(HG .EQ. 'L')THEN
W2fx=-MM21*SNPIT2
W2fy=0.D00
W2£z=MM21*CSPIT2
ELSE
W2fx=MM21*SNPIT2
W2fy=0.D00
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W2fz=-MM21*CSPIT2
END IF
*

* CALCULATE Wl

¢ ——--- eq. (3.32)

IF(4G .EQ. 'L')THEN
W1lfx=-SNPITI1
W1fy=0.D00
W1lfz=-CSPIT1

ELSE
W1fx=SNPITI
W1lfy=0.D00
W1fz=CSPIT1

END IF

* CALCULATE W12

¢ ———~- eq. (3.34)
W12fx=W1fx-W2fx
W12fy=Wilfy-W2fy
W12£2=W1fz2-W2fz

* CALCULATE VT2

¢ ——-~- eq. (3.36)
CALL CROSS(VT2fx,VT2fy,VI2fz,W2Efx,W2fy,W2fz,Bfx,Bfy,Bfz)

* CALCULATE VTI

R eq. (3.35)
CALL CROSS(VTlfx,VT1fy,VTlfz,WlEx,Wlfy,Wlfz,Bfx,BEy,BE2)

* CALCULATE VT12

”*

c ———-- eq. (3.37)
VT12f£x=VT1Ex-VT2fx
VI12fy=VT1lfy-VT2fy
VT12£fz=VT1£2-VT2fz

* CALCULATE V2

¢ ———-- eq. (3.38)
CALL DOT(V2I,VT12fx,VT12fy,VT12f2,E21fx,E21fy,E21£fz)
¢ ——--- eq. (3.39)
CALL DOT(V2II,VT12fx,VT12fy,VT12£f2,E211£fx,E2I1fy,E211£2)

* CALCULATE A31
¢ ——--- eq. (3.40)
CALL DET(DET1,W12fx,W12fy,W12fz,Nfx,Nfy,Nfz,E21£x,E21fy,E21£2)

A31=-K21*V2I-DETI
¢ ~—=-- eq. (A.33)
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Al3=4A31

%

CALCULATE A32

————— eq. (3.41)
CALL DET(DET2,W12fx,W12fy,W12fz,Nfx,Nfy,Nfz,E211£x,E211fy,E211£2)
A32=-K2II*V2II-DET2

----- eq. (A.35)
A23=A32

O

[¢]

*

CALCULATE A33

c ——-—- eq. (3.42)
CALL DET(DET3,Nfx,Nfy,Nfz,W12fx W12fy,Wi2f2,VT12£x,VT12fy,VT12£2)
CALL CROSS(Cx,Cy,Cz,Wlfx,Wlfy,Wlfz,VT2£x,VT2fy,VT2f2)
CALL CROSS (Dx,Dy,Dz,W2fx,W2fy,W2fz,VT1fx,VT1fy,VT1fz)
CALL DOT(DOT1,Nfx,Nfy,Nfz,Cx-Dx,Cy-Dy,Cz-Dz)
CALL DET(DET4,Nfx,Nfy,Nfz,W2fx,W2fy,W2fz,Bfx,Bfy,Bfz)
A33=K2I1*V2I*V2I+K2II*V2I1*V2I1-DET3-DOT1+M21PRM*DET4

k4

* CALCULATE ETAP
¢ ———-- eq. (3.53)
ETAP=DATAN (((A33+A31%V21) *TNETAG-A31*V2II) / (A33+A32%
(V2II-V2I*TNETAG)))
TNETAP=DSIN (ETAP) /DCOS (ETAP)
%

* CALCULATE All, Al2, AND A22
%

N3=(1.D0O0+TNETAP*TNETAP) *A33

c ——~——- eq. (3.72)
N1=(A13*A13-(A23*TNETAP) **2) /N3
¢ —=—=—- eq. (3.73)

N2=(A23+A13*TNETAP) * (A13+A23*TNETAP) /N3
KS2=K2I1+K211
G2=K2I-K211I
¢ ——~—- eqs. (3.74), (3.75)
KS1=KS2- ((4.DO0*AXIA*AXIA-N1*N1-N2*N2)* (1.DOO+TNETAP*TNETAP)/
(-2.D00*AXIA* (1.DO0+TNETAP*TNETAP) +N1* (TNETAP*TNETAP-1.D00)
. ~2.DO0O*N2*TNETAP))

c ——-—- eqs. (3.66), (3.69) & description after eq. (3.60)
Al1=TNETAP*TNETAP/ (1.DCO+TNETAP*TNETAP) * (KS2-KS1) +N1i

¢ ———-- eqs. (3.67), (3.70) & description after eq. (3.60)
Al12=-TNETAP/ (1.D0O0+TNETAP*TNETAP) * (KS2~-KS1) +N2

c ——=-- eqs. (3.68), (3.71) & description after eq. (3.60)
A22=1.D00/ (1.DO0+TNETAP*TNETAP) * (KS2-KS1)-N1

e ————— eq. (A.32)
A21=A12

*
* CALCULATE SIGMA(12)

¢ ————- eq. (3.77)
' SIGDBL=DATAN (2.D00*A12/ (K21-K2I1-A11+A22))
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%
*

*

%

%*

s
b

o
bl

%*

%

*

SIGM12=.5D00*SIGDBL

CALCULATE KI1I AND K1II

----- eq. (3.78)
G1=2.D00*A12/DSIN(SIGDBL)
----- eq. (3.79)

KiI=.5D00* (KS1+Gl)
K1II=.5D00* (KS1-G1)

CALCULATE E11 AND El1II

————— similar to description after eq. (3.29)
CALL ROTATE(ElI1fx,El1fy,E1I1fz E2Ifx,E2Ify,E21fz,~-SIGM12,Nfx,Nfy,
. Nf2)
CALL ROTATE(El1IIfx,E1I11fy,El111f2,E11fx,E11fy,E11£f2,RITAG,
. Nfx,Nfy,Nfz)

PINION

CALCULATE PRINCIPAL DIRECTIONS OF THE PINION CUTTER

----- eq. (3.92)

IF(HG .EQ. 'L')THEN
EPIfx=SND1*SNTAUP
EPIfy=CSTAUP
EPIfz=CSD1*SNTAUP
ELSE
EPIfx=~SND1*SNTAUP
EPIfy=~CSTAUP
EPIfz=-CSD1*SNTAUP
END IF

IF (DACOS (EGIfx*EPIfx+EGIfy*EPIfy+EGIfz*EPI1£f2) /CNST .GT. 45.D00)

. THEN
EPIfx=-EPIfx
EPI1fy=-EPI1fy
EP1fz=-EP1lfz

END IF

CALL ROTATE(EPIIfx,EPIIfy,EPI1f2,EPIfx,EPIfy,EPIfz,RITAG,
. Nfx,Nfy,Nfz)

CALCULATE THE ANGLE BETWEEN PRINCIPAL DIRECTIONS OF PINION AND CUTTER

----- cross product of eli and epi
SNSIGM=(E1Ify*EPI1fz-E1I1fz*EPIfy) /Nfx

----- dot product of eli and epi
CSSIGM=E1Ifx*EPIfx+ElI1fy*EPIfy+E1Ifz*EPIf2
CS2S1G=2.DO0*CSSIGM*CSSIGM-1.D00
TN2S1G=2.D00*SNSIGM*CSSIGM/CS2S1G

CALCULATE PRINCIPAL CURVATURES OF PINION CUTTER
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c —-—-—- eq. (2.20)
KP1I=1.D00/R
IF(J .EQ. 2)THEN

KPII=-KPII
END IF
c ———-- eq. (3.94)

KPI=(KPII*(K1I*CSSIGM*CSSIGM+K1II*SNSIGM*SNSIGM)-K1I*K1I1I)/
(KPII-K1I*SNSIGM*SNSTGM-K1II*CSSIGM*CSSIGM)

¥

*CALCULATE All, Al2, AND A22
*

¢ ————- eq. (A.31)
Al1=RPI-K1I*CSSIGM*CSSIGM-K1II*SNSIGM*SNSIGM

c ———-- eq. (A.32) .
A12=(K1I-K1II)*SNSIGM*CSSIG

c ———-— eq. (A.34)

A22=KPII-K1I*SNSIGM*SNSIGM-K1II*CSSIGM*CSSIGM
*
* CALCULATE ZCR
¥*
¢ ————- eq. (3.101)
IF(J .EQ. 1) THEN
ZCR= (SNLANP/KPI) ~R*SNLANP
ELSE
ZCR=- (SNLANP/KPI)-R*SNLANP
END IF
%*

* CALCULATE XCR

c ————- eq. (3.99)
Bmx=-Bfx*CSD1+Bfz*SND1
XCR=Bmx—-R*CSLANP

* CALCULATE RP

(g}

----- eq. (3.103)
IF(I1*J .EQ. 2)THEN
RP=ZCR+DSQRT (DABS (R*R-XCR*XCR) )
ELSE
RP=ZCR-DSQRT (DABS (R*R-XCR*XCR))
END IF

¥%

* CALCULATE MCP

a2,

Z11=Nfy*EPI1fz-Nfz*EPIfy
Z12=Nfy*EPIfx-Nfx*EPIfy
221=NEy*EPI1f2~NfZ*EPI1fy
222=Nfy*EPIIfx~NEx*EPIIfy
c ~=——- eqs. (3.107), (3.108)
Cl1=Z11*CSD1+Z12*SND1
C12=~Z11*SNPIT1+Z12*CSPITI
C22=-Z21*SNPIT1+Z22*CSPITI1
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IF(HG .EQ. 'R')THEN
Cl1=-Cl1
Cl12=-C12
C22=-C22
END IF
¢ ————- eq. (3.119)
T4=(BEy*CSRT1) / (EPI1£x*CSDI-EPII£z*SND1)
IF(HG .EQ. 'R') THEN
Ta=-Té
END IF
c ~———-- eq. (3.120)
T1=-Cl11/KPI
T2=(A11*KPII*T4+A11%*C22~A12%C12)/(A12*KPI)
c ~—-—- eq. (3.122)
Ul1=T1*EPIfx
U12=T2*EPIfx+T4*EPIIfx
U21=T1*EPIfy
U22=T2*EPIfy+T4*EPIIfy
U31=T1*EPIfz
U32=T2*EPIfz+T4*EPIIfz

c —-——- eq. (3.124)
V1=U21* (Nfz*CSD1+Nfx*SND1) -Nfy* (U11*SND1+U31*CSD1)
c ————- eq. (3.125) '

v2=(U22*CSD1-U21*SNPIT1) *Nfz- (U11*CSPIT1+U12*SND1+U32*CSD1-U31
*SNPIT1) *Nfy+ (U21*CSPIT1+U22%SND1) *N£x
c ~———- eq. (3.126)
V3=U22*CSPIT1*Nfx+ (U32*SNPIT1-U12*CSPITL1) *Nfy~U22*SNPIT1*Nfz
IF(HG .EQ. 'R')THEN
vi=-vl
V2=-v2
v3=-v3
END IF
c ———-- eq. (3.132)
H11=-U21*CSPIT1+SND1%* (Bfz*SNPIT1-BEfx*CSPIT1)
c ——--- eq. (3.134)
H21=Ul1*CSPIT1-U31*SNPIT1+BEy*SNRT1
c ————- eq. (3.136)
H31=U21*SNPIT1+CSD1* (Bf2*SNPIT1-Bfx*CSPIT1)
c ————= eq. (3.133)
H12=(Bfz*SNPIT1-Bfx*CSPIT1-U22) *CSPIT1
¢ ——=—- eq. (3.135)
H22=-(Bfy~-U12*CSPIT1+U32*SNPIT1)
c ——=—- eq. (3.137)
H32=- (Bfz*SNPIT1-BEfx*CSPIT1-U22) *SNPIT1
IF(HG .EQ. 'R')THEN
H11=U21*CSPIT1+SND1* (Bfz*SNPIT1-Bfx*CSPIT1)
H21=-U11*CSPIT1+U31*SNPIT1+Bfy*SNRT]
H31=-U21*SNPIT1+CSD1* (Bfz*SNPIT1-Bfx*CSPIT1)
H12=(Bfz*SNPIT1-Bfx*CSPIT1+U22) *CSPITI
H22=- (Bfy+U12*CSPIT1-U32*SNPIT1)
H32=- (Bf2z*SNPIT1-Bfx*CSPIT1+U22) *SNPIT1
END IF
c ——=—- eq. (3.139)
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F1=Nfx*H11+Nfy*H21+Nfz*H31

c ————- eq. (3.140)
F2=Nfx*H12+Nfy*H22+Nfz*H32
c ————- eq. (3.145)

Y2=A12*%(2.DO0O*KPI*T1*T2-V2-F1)
Y3=A12* (RPI*T2*T2+KPII*T4*T4-V3-F2)~(KPI*T2+C12) * (KRP1I1*T4+C22)
MP1=-Y3/Y2

*

* CALCULATE EM AND LM

c ————- eq. (3.122)
VT1PEx=U11*MP1+U12
VT1Pfy=U21*MP1+U22
VT1P£2=U31*MP1+U32
c ———-- eq. (3.111)
IF(HG .EQ. 'L')THEN
EM=(Bfy*CSPIT1-VT1Pfx) /(MP1*SND1) +Bfy
LM=(Bfx*CSPIT1-Bfz*SNPIT1+VT1Pfy) /MP1+Bfx*SND1+B£2*CSD1
ELSE
EM=(-Bfy*CSPIT1-VT1Pfx)/(MP1*SND1)~Bfy
LM=(Bfx*CSPIT1-Bfz*SNPIT1-VT1P£fy) /MP1+Bfx*SND1+B£f2z*CSD1
END IF
* CALCULATE SP AND QP
c ————- eqs. (3.150), (3.151)
IF(HG .EQ. 'L')THEN
IF(J .EQ. 1)THEN
21=-Bfy+EM-SNLANP/KPI*SNTAUP
22=Bfx*SND1+Bfz2*CSD1-LM-SNLANP/KPI*CSTAUP
ELSE
21=-Bfy+EM+SNLANP/KPI*SNTAUP
22=Bfx*SND1+Bfz*CSD1-LM+SNLANP/KPI*CSTAUP
END IF
ELSE
IF(J .EQ. 1)THEN
21=Bfy+EM+SNLANP/KPI*SNTAUP
22=Bfx*SND1+Bfz*CSD1-LM-SNLANP/KPI*CSTAUP
ELSE
21=3fy+EM-SNLANP/KPI*SNTAUP
22=Bfx*SND1+B£2*CSD1-LM+SNLANP/KPI*CSTAUP
END IF
END IF
SP=DSQRT(21*21+22%Z2)
QP=DATAN(Z1/22)
IF(HG .EQ. 'L')THEN
THETAP=TAUP-QP
ELSE
THETAP=TAUP+QP
END IF
%

* CONVERT RADIAN TO DEGREE
*
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PSIPDG=PSIP/CNST
TAUPDG=TAUP/CNST
QPDG=QP/CNST
THEPDG=THETAP/CNST
LANPDG=LANDAP/CNST
*
* QUTPUT

%

WRITE(72,10001) PSIPDG,QPDG,RP,SP,MP1, LANPDG, XCR, ZCR, EM, LK, TAUPDG,

. THEPDG

10000 FORMAT (1X, 'GEAR SETTINGS:',/
,1X,'PSIGDG =',G20.12,12X, 'QGDG =',620.1%2,/
,1X, 'RG =',G20.12,12X,'SG =',620.12,/
,1X, 'MG2 =',G20.12,12X, 'TAUGDG =',G20.12,/
,1X, 'UG =',G20.12,12X, 'THETAGDG =',G20.12,/
,1X, 'PHIGODG =',G20.12,//

. ,1X, '"PINION SETTINGS:',/)

10001 FORMAT(1X,'PSIPDG =',G20.12,12X, 'QPDG =',G620.12,/
,1X, 'RP =',620.12,12X, 'SP =',620.12,/
,1X, 'MP1 =',620.12,12X, 'LANDAPDG =',G20.12,/
,1X, 'XCR =',G620.12,12X, 'ZCR =',G620.12,/
J1X, 'EM =',G20.12,12X,'LM =',620.12,/
,1X,'TAUPDG  =',G20.12,12X,'THETAPDG =',G20.12,/)

TPAR (1) =RG*CSPSIG/SNPSIG*CSPSIG
TPAR (2) = (MG2-SNRT2) *CSPSIG
TPAR (3) =CSRT2*SNPSIG

TPAR (4) =RG*CSPSIG/SNPSIG
TPAR (5) =CSD2*SNPSIG

TPAR (6) =SND2*CSPSIG

TPAR (7) =SND2*SNPSIG

TPAR (8) =CSD2*CSPSIG

TPAR (9) =ZCR*CSRT1

TPAR (10) =SP*CSRT1

TPAR (11)=EM*CSRT1

TPAR (12) =XCR*CSRTI1

TPAR (13)=8P* (MP1-SNRT1)
TPAR (14) =EM*SNRT1

TPAR (15) =LM*SNRT1
TPAR(16) =]

TPAR (17) =R

PHIP=0.D0OO
PHI21=0.D00
PHI11=0.D0OO
CSPH11=DCOS (PHI1l)
SNPH11=DSIN(PHI1l)

TX(1)=PHIP

TX(2) =THETAP
TX (3) =LANDAP
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*

TX (4)=PHI21

TX(5)=PHIG

TX (6) =THETAG

CALL NONLIN(TCN,14,6,200,TX,TF,TF1,1.D-5,A2S, IPVT,WORK)
PHIPO=TX (1)

THEPO=TX (2)

LANDPO=TX (3)

PHI210=TX (4)

PHIGO=TX (5)

THEGO=TX (6)

TX (1) =PHIPO

TX(2) =THEPO

TX (3) =LANDPO

TX (4)=PHI210

TX (5)=PHIGO

TX (6) =THEGO
DPHI11=18.D00/36.D0O0*CNST

DO 100 1J=1,60

CSPH11=DCOS (PHI11)

SNPH11=DSIN(PHI11)

CALL NONLIN(TCN,14,6,200,TX,TF,TF1,1.D-5,AZS,IPVT,WORK)
PHIP=TX(1)

THETAP=TX (2)

LANDAP=TX (3)

PHI21=TX(4)

PHIG=TX(5)

THETAG=TX (6)
ERROR=((PHI21*36.D02~PHI210%*36.D02)-PHI11%*36.D02*TN1/TN2) /CNST

CALL PRING2(KS2,G2,E21fx,E21fy,E21fz,E2I11fx,E211fy,E211f2)

CALL PRINP1(KS1,Gl,E11fx,El11fy,E11f2,E111£fx,E1IIfy,E111£fz2)

CALL SIGAN2(E21fx,E21fy,E2Ifz,E211fx,E2I11fy,E21Ifz,E11fx,Ellfy,
E1I1fz,CS2S1G,SN2SIG,SIGM12)

CALL EULER(KS2,G2,KS1,G1,CS2SIG,SN2SIG, IEU)

%

¥
* XBf,

IF(IEU .EQ. 1) THEN

WRITE(72,%) 'THERE IS INTERFERENCE'
GO TO 88888

END IF

CALL ELLIPS(KS2,G2,KS1,G1,CS2S1G,SN2SIG,DEF,ALFAL,
AXISL,AXISS,E11fx,E1Ify,E11f2)

CALL PF(B2px,B2py,B2pz,B2fx,B2fy,B2£z)
YBf, and ZBf is the direction of the long axis of the ellipse
CALL PF(XBp,YBp,ZBp,XBf,YBf,ZBf)
ELBlpx=B2px+XBp
ELBlpz=B2p2+ZBp

ELB2px=B2px~XBp
ELB2pz=B2p2-ZBp

181




IF(I .EQ. 1 .AND. J .EQ. 1)THEN
WRITE(9,9000) 1J,PHI11/CNST,IJ,ERROR
IF(IJ .LE. 37)THEN
WRITE(8,8000)1J,B2pz,1J,B2px
WRITE(7,7000)ELBlpz,ELBlpx,ELB2pz,ELB2px
END IF
ELSE IF(I .EQ. 1 .AND. J .EQ. 2)THEN
WRITE(79,9000) 1J,PHI11/CNST,IJ,ERROR
IF(IJ .LE. 37)THEN
WRITE(78,8000)1J,B2pz,1J,B2px
WRITE(77,7000)ELBlpz,ELBlpx,ELB2pz,ELB2px
END IF
ELSE IF(I .EQ. 2 .AND. J .EQ. 1) THEN
WRITE(29,9000) 1J,PHI11/CNST, 1J,ERROR
IF(IJ .LE. 37)THEN
WRITE(28,8000)1J,B2pz,1J,B2px
WRITE(27,7000)ELBlpz,ELBlpx,ELB2pz,ELB2px
END IF
ELSE
WRITE(89,9000) 1J,PHI11/CNST, 1J,ERROR
IF(IJ .LE. 37)THEN
WRITE(88,8000)1J,B2pz,1J,B2px
WRITE(87,7000)ELBlpz,ELBlpx,ELB2pz,ELB2px
END IF
END IF

PHI11=PHI11+DPHI1l

CONTINUE

PHI11=0.D00

TX (1) =PHIPO
TX (2) =THEPO
TX (3) =LANDPO
TX (4) =PHI210
TX (5) =PHIGO
TX (6) =THEGO

DO 200 1J=1,60

CSPH11=DCOS (PHI11)

SNPH11=DSIN(PHI11)

CALL NONLIN(TCN,14,6,200,TX,TF,TF1,1.D~5,A2S, IPVT, WORK)
PHIP=TX (1)

THETAP=TX (2)

LANDAP=TX (3)

PHI21=TX (4)

PHIG=TX (5)

THETAG=TX (6)

ERROR=((PHI21%*36.D02-PHI210*36.D02) ~PHI11*36.D02*TN1/TN2) /CNST
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CALL PRING2(KS2,G2,E21fx,E21fy,E21f2z,E211fx,E211fy,E211f2)
CALL PRINP1(KS1,Gl,E1T7fx,E11fy,E1If2,E111fx,E1I1Ify,E111£f2)
CALL SIGAN2(E21fx,E21fy,E21fz,E211£x,E2I1fy,E211f2z,E11fx,ElIlfy,
. E11f2,CS251G,SN2SIG,SIGM12)
CALL EULER (KS2,G2,KS1,G1,CS2SIG,SN2SIG, IEU)
- IF(IEU .EQ. 1) THEN
WRITE(72,%) 'THERE IS INTERFERENCE'
GO TO 88888
END IF
%
CALL ELLIPS(KS2,G2,KS1,G1,CS2SIG,SN2SIG,DEF,ALFAl,
AXISL,AXISS,E11fx,E1Ify,E11f2)

CALL PF(B2px,B2py,B2pz,B2£x,B2fy,B2£2)

o
~

* XBf, YBf, and ZBf is the direction of the long axis of the ellipse
CALL PF(XBp,YBp,ZBp,XBf,YBf,ZBf)
ELBlpx=B2px+XBp
ELBlpz=B2pz+ZBp
ELB2px=B2px—-XBp
ELB2pz=B2pz-ZBp

%*

IF(I .EQ. 1 .AND. J .EQ. 1)THEN
WRITE(9,9001) IJ,PHI11/CNST,IJ,ERROR

IF(IJ .LE. 37)THEN
WRITE(8,8001)1J,B2pz,1J,B2px
WRITE(7,7000)ELBlpz,ELBlpx,ELB2pz,ELB2px
END IF

ELSE IF(I .EQ. 1 .AND. J .EQ. 2)THEN
WRITE(79,9001)1J,PHI11/CNST, 1J,ERROR

IF(1J .LE. 37)THEN
WRITE(78,8001)1J,B2pz,1J,B2px
WRITE(77,7000)ELBlpz,ELBlpx,ELB2pz,ELB2px
END IF

ELSE IF(I .EQ. 2 .AND. J .EQ. 1)THEN
WRITE(29,9001)1J,PHI11/CNST,I1J,ERROR

IF(1J .LE. 37)THEN
WRITE (28,8001)1J,B2pz,1J,B2px
WRITE(27,7000)ELBlpz,ELBlpx,ELB2pz,ELB2px
END IF

ELSE

WRITE(89,9001)1J,PHI11/CNST,I1J,ERROR

IF(1IJ .LE. 37)THEN
WRITE (88,8001)1J,B2pz,1J,B2px
WRITE(87,7000)ELBlpz,ELBlpx,ELB2pz,ELB2px
END IF

END IF

*

PHI11=PHI11-DPHI11
*

200 CONTINUE
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%*

99999
88888
%

7000

8000
8001
9000
9001

%*

* FOR
*

* FOR

CONTINUE
CONTINUE

FORMAT (6X, 'EX(1)=',F9.6,/,6X, 'EY(1)="',F9.6,/,
6X,'EX(2)=',F9.6,/,6X,'EY(2)=",F9.6,/,
6X, 'CALL CURVE(EX,EY,2,0)"')

FORMAT (6X, 'X0(',12,')=",F9.6,/,6X,'Y0(',12,')="',F15.6)

FORMAT (6X, 'X1(',12,')="',F9.6,/,6X,'Y1(',I2,')=",F15.6)
FORMAT (6X, 'X0(',12,')=",F7.3,/,6X,'Y0(',12,')=",F16.4)
FORMAT (6X, 'X1(',12,')=",F7.3,/,6X,'Y1(',12,')=",F16.4)
END

THE DETERMINATION OF MEAN CONTACT POINT

SUBROUTINE PCN1(X,F,NE)
IMPLICIT REAL*8 (A-H,K,M-2)
CHARACTER*8 HG
INTEGER NE
REAL*8 X(NE),F(NE),PAR(6)
COMMON/P1/PAR
COMMON/AOQ/HG
COMMON/Al/pl1,pl12,p13,p21,p22,p23,p31,p32,p33,p1,p2,p3
COMMON/A2/SG,CSRT2,QG, SNPSIG,CSPSIG
COMMON/A3/TND1,TND2,RITAG
THETAG=X (1)
CSTHEG=DCOS (THETAG)
SNTHEG=DSIN (THETAG)
IF(HG .EQ. 'L')THEN
UG=PAR (1) -SG* (PAR (2) *SNTHEG+PAR (3) ) / (CSRT2*DSIN (THETAG-QG))
ELSE
UG=PAR (1) -SG* (PAR (2) *SNTHEG+PAR (3)) / (CSRT2*DSIN (THETAG+QG) )
END IF
Bex=PAR (4) ~UG*CSPSIG
Bcy=UG*SNPSIG*SNTHEG
Bcz=UG*SNPSIG*CSTHEG
CALL TRCOOR (Bpx,Bpy,Bpz,

. pli,pl2,p13,p21,p22,p23,p31,p32,p33,p1,p2,p3,
. Bex,Bey,Bcz)

XM=Bpz* (TND1-TND2) /2.D00
F(1)=Bpx-XM
END

THE DETERMINATION OF MEAN CONTACT POINT

SUBROUTINE PCN2(X,F,NE)

IMPLICIT REAL*8 (A-H,K,M-2)

CHARACTER*8 HG

INTEGER NE

REAL*8 X(NE),F(NE),PAR(6)

COMMON/P1/PAR

COMMON/AO/HG
COMMON/Al/pll,p12,p13,p21,p22,p23,p31,p32,p33,p1,p2,p3
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%

* %

*

COMMON/A2/SG,CSRT2,QG, SNPSIG,CSPSIG
COMMON/A3/TND1, TND2,RITAG
COMMON/A4/CSD2,SND2,CSPIT2,SNPIT2
COMMON/A5/CSQG, SNQG, THETAG
PHIG=X(1)
CSPHIG=DCOS (PHIG)
SNPHIG=DSIN (PHIG)
IF(HG .EQ. 'L')THEN
UG=PAR (1)-SG* (PAR (2) +PAR (3) *DSIN (QG-PHIG)) /
(CSRT2*DSIN (THETAG-QG+PHIG) )
ELSE
UG=PAR (1) -SG* (PAR (2) +PAR (3) *DSIN (QG-PHIG)) /
(CSRT2*DSIN (THETAG+QG-PHIG))
END IF
Bex=PAR (4) -UG*CSPSIG
Bcy=UG*PAR (5)
Bcz=UG*PAR (6)

Mmc=Mms *Msc

IF(HG .EQ. 'L')THEN

CALL COMBI(mIl1,m12,m13,m21,m22,m23,m31,m32,m33,ml,m2,m3,
1.D000,0.D00,0.D00,0.D00,CSPHIG,SNPHIG,0.D00,~SNPHIG,CSPHIG,
0.D00,0.D00,0.D00,
1.D00,0.D000,0.D00,0.D00,CSQG, -SNQG, 0.D00, SNQG, CSQG,
0.D00,-SG*SNQG, SG*CSQG)

Mpc=Mpm*Mmc
CALL COMBI(pll,pl2,pl3,p21,p22,p23,p31,p32,p33,p1,p2,p3,
Ccsb2,0.D00,-SND2,0.D00,1.D00,0.D00, SND2,0.D0Q,CSD2,
0.000,0.D00,0.D00,
mil,mi2,m13,m21,m22,m23,m31,m32,m33,m1l,m2,m3)
ELSE
Mmc=Mms*Msc
CALL COMBI(m11,m12,m13,m21,m22,m23,m31,m32,m33,ml,m2,m3,
1.000,0.D000,0.D00,0.D00,CSPHIG,-SNPHIG,0.D00, SNPHIG,CSPHIG,
0.000,0.D000,0.D00,
1.000,0.D00,0.D00,0.D00,CSQG, SNQG, 0.D00, -SNQG,CSQ ..
0.D00, SG*SNQG, SG*CSQG)
Mpc=Mpm*Mmc

CALL COMBI(pll,pl2,p13,p21,p22,p23,p31,p32,p33,p1,p2,p3,
Csp2,0.D00,-SND2 0.D00, 1.D00,0.D00, SND2,0,D00,CSD2,
0.D000,0.D00,0.D00,
mll,ml2,ml3,m21,m22,m23,m31,m32,m33,ml,m2,m3)

END IF
CALL TRCOOR (Bpx,Bpy,Bpz,

. pll,pl2,p13,p21,p22,p23,p31,p32,p33,p1,p2,p3,
. Bex,Bey,Bez)
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XM=Bpz* (TND1-TND2) /2.D00
F(1)=Bpx—XM

RETURN

END

* FOR THE DETERMINATION OF COORDINATES AND NORMALS OF CONTACT POINTS

SUBROUTINE TCN(TX,TF,NE)

IMPLICIT REAL*8(A-H,K,M-2)

REAL*8 LANDAP,LM

CHARACTER*8 HG

INTEGER NE

DIMENSION TX(NE),TF(NE), TPAR(19)
COMMON/T1/TPAR

COMMON/AQ/HG
COMMON/A2/SG,CSRT2,QG, SNPSIG,CSPSIG
COMMON/A4/CSD2,SND2,CSPIT2,SNPIT2
COMMON/B1/CSPH11,SNPH11,SP,EM,LM,CSRT1,CSD1,SND1,CSLANP, SNLANP
COMMON/B2/CSPIT1,SNPIT1,MP1,MG2,QP
COMMON/B3/B2£x,B2fy,B2fz
COMMON/B4/CSPH2, SNPH2,CSPH21,SNPH21
COMMON/B5/XCR,ZCR
COMMON/C1/UG,CSTAUG, SNTAUG
COMMON/C2/N2£x,N2fy,N2fz
COMMON/D1/CSTAUP, SNTAUP
COMMON/F1/PHIGO

COMMON/G1/DA,DV

J=IDINT (TPAR (16))

PHIP=TX (1)

THETAP=TX (2)

LANDAP=TX (3)

PHI21=TX (4)

PHIG=TX(5)

THETAG=TX (6)

CSPHIP=DCOS (PHIP)

SNPHIP=DSIN (PHIP)

CSTHEP=DCOS (THETAP)

SNTHEP=DSIN (THETAP)

CSLANP=DCOS (LANDAP)

SNLANP=DSIN (LANDAP)

CSPH21=DCOS (PHI21)
SNPH21=DSIN(PHI21)

CSPHIG=DCOS (PHIG)

SNPHIG=DSIN (PHIG)

CSTHEG=DCOS (THETAG)

SNTHEG=DSIN (THETAG)
PHI2=(PHIG-PHIGO) /MG2
PHI1=PHIP/MP1

CSPH2=DCOS (PHI2)

SNPH2=DSIN (PHI2)

CSPH1=DCOS (PHI1)

SNPH1=DSIN (PHI1)
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*

IF(HG .EQ. 'L')THEN
TAUP=THETAP+QP-PHIP
ELSE
TAUP=THETAP-QP+PHIP
END IF

CSTAUP=DCOS (TAUP)
SNTAUP=DSIN (TAUP)

IF(HG .EQ. 'L') THEN
TAUG=THETAG-QG+PHIG
ELSE
TAUG=THETAG+QG-PHIG
END IF

CSTAUG=DCOS (TAUG)
SNTAUG=DSIN (TAUG)
CSQPHP=DCOS (QP-PHIP)
SNQPHP=DSIN (QP-PHIP)
CSQPHG=DCOS (QG-PHIG)
SNQPHG=DSIN (QG-PHIG)

* LEFT-HAND GEAR

*

*

IF(HG .EQ. 'L')THEN
UG=TPAR (1) -SG* (TPAR (2) *SNTHEG-SNQPHG*TPAR (3) ) / (CSRT2*SNTAUG)
B2py=UG*SNPSIG*SNTAUG-SG*SNQPHG
ELSE
UG=TPAR (1) -SG* (TPAR (2) *SNTHEG+SNQPHG*TPAR (3) ) / (CSRT2*SNTAUG)
B2py=UG*SNPSIG*SNTAUG+SG*SNQPHG
END IF
B2px=CSD2* (TPAR (4) ~UG*CSPSIG) -SND2* (UG*SNPSIG*CSTAUG+SG*CSQPHG)
B2pz=SND2* (TPAR (4) ~-UG*CSPSIG) +CSD2* (UG*SNPSIG*CSTAUG+SG*CSQPHG)
N2px=TPAR (5) -TPAR (6) *CSTAUG
N2py=CSPSIG*SNTAUG
N2pz=TPAR (7) +TPAR (8) *CSTAUG

* [Mwp) = [Mwa) [Map]

*

IF(HG .EQ. 'L')THEN

CALL COMBI (wpll,wpl2,wpl3,wp2l,wp22,wp23,wp31,wp32,wp33,
wpl,wp2,wp3,
CSPHZ,SNPHZ,O.DOO,—SNPHZ,CSPHZ,O.DO0,0.DO0,0.DOO,1.D00,
0.D00,0.D00, 0.D00,
CSPIT2,0.D00, SNPIT2,0.D00,1.D00,0.D00,~SNPIT2,0.D00,CSPIT2,
0.D00,0.D00, 0.D00)

ELSE

CALL COHBI(wpll,wplZ,wp13,wp21,wp22,wp23,Wp3l,wp32,wp33,

wpl,wp2,wp3,

CSPH2,-SNPH2,0.D00, SNPH2,CSPH2,0.D00,0.D00,0.D00, 1.D00,
0.D00, 0.D00, 0.D00,
CSPITZ,O.DOO,SNPITZ,O.DOO,1.DO0,0.DOO,-SNPITZ,O.DOO,CSPITZ,
0.D00,0.D00,0.D06)
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END IF
CALL TRCOOR (B2wx,B2wy,B2wz,
. wpll,wpl2,wpl3,wp21,wp22,wp23,wp31,wp32,wp33,wpl,wp2,wp3,
. B2px,B2py,B2pz)
CALL TRCOOR (N2wx,N2wy,N2wz,
. wpll,wpl2,wpl3,wp21,wp22,wp23,wp31,wp32,wp33,0.D00,0.D00,0.D00,
. N2px,N2py,N2pz)
%*

* [Mfw]=[Mfa] [Maw]
*
IF(HG .EQ. 'L')THEN
CALL COMBI(fwll,fwl2,fwl3,fw2l,fw22,fw23, fw3l, fu32,fw33,
fwl, fw2,£fw3,
CSPITZ,O.DOO,—SNPITZ,O.DOO,1.DO0,0.DOO,SNPITZ,O.DOO,CSPITZ,
0.D00,0.D00,0.D00,
CSPH21,-SNPH21,0.D00, SNPH21,CSPH21,0.D00,0.D00,0.D00, 1.D00,
0.D00,0.D00, 0.D00)
ELSE
CALL COMBI (fwll,fwl2,fwl3,fw2l,£fw22, fw23, fw3l, fw32, fw33,
fwl, fw2,fw3,
Csp1T2,0.D00,-SNPIT2,0.D00,1.D00,0.D00,SNPIT2,0.D00,CSPIT2,
0.D00,0.D00,0.D00,
CSPH21,SNPH21,0.D00,-SNPH21,CSPH21,0.D00,0.D00,0.D00,1.D00,
0.D00, 0.D00,0.D00)
END IF
CALL TRCOOR (B2fx,B2fy,B2fz,
. fwll,fwl2,fwl3, fw2l,fw22, fw23, fu3l, fwl2, fwl3, fwl, fw2, fw3,
. B2wx,B2wy,B2wz)
CALL TRCOOR (N2fx,N2fy,N2fz,
. fwll,fwl2,£fwl3, fw2l,£fw22,fw23, fw3l, fw32, fw33,0.D00,0.D00,0.D00,
. N2wx,N2wy,N2wz)
%

* PINION
%*

IF(HG .EQ. 'L')THEN
Blpy=(ZCR+TPAR (17) *SNLANP) *SNTAUP+SP*SNQPHP-EM
ELSE

Blpy=(ZCR+TPAR (17) *SNLANP) *SNTAUP-SP*SNQPHP+EM

END IF

Blpx=(XCR+TPAR (17) *CSLANP) *CSD1- ((ZCR+TPAR (17) *SNLANP) *CSTAUP+

SP*CSQPHP+LM) *SND1
Blpz= (XCR+TPAR (17) *CSLANP) *SND1+ ((ZCR+TPAR (17) *SNLANP) *CSTAUP+
SP*CSQPHP+LM) *CSD1

IF(J .EQ. 2)THEN

N1px=CSLANP*CSD1-SNLANP*SND1*CSTAUP

N1py=SNLANP*SNTAUP

N1pz=CSLANP*SND1+SNLANP*CSD1*CSTAUP
ELSE

N1px=-CSLANP*CSD1+SNLANP*SND1*CSTAUP

N1py=-SNLANP*SNTAUP

N1pz=-CSLANP*SND1-SNLANP*CSD1*CSTAUP

END IF
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: [Mwp] = [Mwa] [Map]

IF(HG .EQ. 'L')THEN
CALL COMBI(wpll,wpl2,wpl3,wp2l,wp22,wp23,wp3l,wp32,wp33,
wpl,wp2,wp3,
CSPH1,-SNPH1,0.D00, SNPH1,CSPH1,0.D00,0.D00,0.D00, 1.D00,
0.D00,0.D00,0.D00,
CSPIT1,0.D00,SNPIT1,0.D00,1.D00,0.D00,-SNPIT1,0.D00,CSPITI,
. 0.D00,0.D00,0.D00)
ELSE
CALL COMBI(wpll,wpl2,wpl3,wp2l,wp22,wp23,wp3l,wp32,wp33,
wpl,wp2,wp3,
CSPH1,SNPH1,0.D00,-SNPH1,CSPH1,0.D00,0.D00,0.D00,1.D00,
0.D00,0.D00,0.D00,
CspPIT1,0.D00,SNPIT1,0.D00,1.D00,0.D00,-SNPIT1,0.D00,CSPIT],
0.D00,0.D00,0.D00)
END IF
CALL TRCOOR (Blwx,Blwy,Blwz,
. wpll,wpl2,wpl3,wp2l,wp22,wp23,wp3l,wp32,wp33,wpl,wp2,wp3,
. Blpx,Blpy,Blpz)
CALL TRCOOR(NIWX,ley,lez,
. wpll,wpl2,wpl3,wp2l,wp22,wp23,wp31,wp32,wp33,0.D000,0.D00,0.D00,
. Nlpx,Nlpy,Nlpz)
*

* [Mpw]=[Mpa) [Maw]
*
IF(HG .EQ. 'L') THEN
CALL COMBI(pwll,pwl2,pwl3,pw2l,pw22,pw23,pw3l,pw32,pw33,

pwl,pw2,pw3,
CSPIT1,0.D00,-SNPIT1,0.D00,1.D00,0.D00,SNPITL,0.D00,CSPITI,
0.D00,0.D00,0.D00,
CSPH11,SNPH11,0.D00,-SNPH11,CSPH11,0.D00,0.D00,0.D00, 1.D00,

. 0.D00,0.D00,0.D00)

ELSE
CALL COMBI (pwll,pwl2,pwl3,pw2l,pw22,pw23,pw3l,pw32,pw33,
pwl,pw2,pw3,
CSPIT1,0.D00,-SNPIT1,0.D00,1.D00,0.D00,SNPIT1,0.D00,CSPIT],
0.D00,0.D00,0.D00,
CSPH11,-SNPH11,0.D00,SNPH11, CSPHll 0.D000,0.D00,0.D00, 1.D00,
0.D00,0.D00,0. DOO)

END IF

CALL TRCOOR(Blpx,Blpy,Blpz,

. pwll,pwl2,pwl3,pw2l,pw22,pw23,pw3l,pw32,pw3l,pwl,pw2,pw3,

. Blwx,Blwy,Blwz)

CALL TRCOOR(Nlpx,Nlpy,Nlpz,

. pwll,pwl2,pwl3,pw2l,pw22,pw23,pw3l,pw32,pw33,0.D00,0.D00,0.D00,

. Nlwx,Nlwy, Nlwz)

Blfx=-Blpx+DA*SNPIT1

Blfy=-Blpy+DV

B1£z=Blp2+DA*CSPIT1

Nlfx=-Nlpx

Nlfy=-Nlpy

N1fz=Nlpz
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* FOR
*

ELSE

END IF

IF(HG .EQ. 'L')THEN

TF (1) =(TPAR (9) *SNTAUP+TPAR (10) *SNQPHP-TPAR (11) ) *CSLANP-

(TPAR (12) *SNTAUP-TPAR (13) *SNTHEP+TPAR (14) *CSTAUP+TPAR (15) *
SNTAUP) *SNLANP

TF (1) =(TPAR (9) *SNTAUP-TPAR (10) *SNQPHP+TPAR (11) ) *CSLANP-
(TPAR (12) *SNTAUP~TPAR 713) *SNTHEP-TPAR (14) *CSTAUP+TPAR (15) *
SNTAUP) *SNLANP

TF(2)=B2fx-Blfx
TF (3)=B2fy-Blfy
TF(4)=B2fz-Blfz
TF(5)=N2£x-N1fx
TF(6)=N2fy-N1fy
END

THE DETERMINATION OF GEAR PRINCIPAL CURVATURES AND DIRECTIONS

SUBROUTINE PRING2(KSG,GG,EGIfx,EGIfy,EGIfz,EGII1fx,EGIIfy,EGIIfz)
IMPLICIT REAL*8(A-H,K,M-Z)

COMMON/A2/SG,CSRT2,QG, SNPSIG,CSPSIG
COMMON/A3/TND1,TND2,RITAG
COMMON/A4/CSD2,SND2,CSPIT2,SNPIT2
COMMON/B2/CSPIT1,SNPIT1,MP1,MG2,QP
COMMON/B3/B2fx,B2fy,B2f2

COMMON/B4/CSPH2, SNPH2,CSPH21, SNPH21
COMMON/C1/UG,CSTAUG, SNTAUG

COMMON/C2/N2£fx,N2fy,N2fz

COMMON/F1/PHIGO

KCI=-CSPSIG/ (UG*SNPSIG)

KCI1I=0.D0O0

ECIfx=SND2*SNTAUG

ECIfy=CSTAUG

ECIf2=-CSD2*SNTAUG
ECIIfx=~CSD2*CSPSIG-SND2*SNPSIG*CSTAUG
ECIIfy=SNPSIG*SNTAUG
ECIIfz=-SND2*CSPSIG+CSD2*SNPSIG*CSTAUG

WGEx=—SNPIT2

WGEy=0.D00

WGEz=CSPIT2

WCEx=-MG2*CSD2

WC£fy=0.D00

WCEfz=-MG2*SND2

WGCEx=WGEx-WCEfx

WGCEy=WGEy-WCEy

WGCEz=WGEZz-WCE2z

CALL CROSS(VTGfx,VTGfy,VTGfz,WGEx,WGEy,WGfz,B2fx,B2fy,B2fz2)
CALL CROSS(VTCfx,VICfy,VICEz,WCEx,WCfy,WCfz,B2fx,B2fy,B2fz)
VTGCEx=VTGEx-VTCEx

VIGCEfy=VTGEy-VTCEy

VIGCE2=VTIGf2z-VTCf2z

CALL DOT(VCI,ECIfx,ECIfy,ECIfz,VTGCEx,VIGCfy,VTIGCEz)
CALL DOT(VCII,ECIIfx,ECIIfy,ECIIfz,VTGCEx,VIGCEy,VIGCE2)
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*

* CALCULATE A13,A423,A33

*

*

%

%

¥

*

CALL DET(DETI,WGCfx,WGCfy,WGCEz,N2fx,N2fy,N2£f2,ECIfx,ECIfy,ECIfz)

A13=-KCI*VCI-DETI

CALL DET(DETII,WGCEx,WGCfy,WGCfz,N2fx,N2fy,N2fz,
ECIIfx,ECIIfy,ECIIf2)

A23=-KCII*VCII-DETII

CALL DET(DET3,N2£fx,N2fy,N2fz,WGCfx,WGCfy,WGCEz,
VTGCEx ,VIGCfy,VTGCEz)

CALL CROSS(Cx,Cy,Cz,WGEx,0.D00,WGEz,VTCEx,VTCEy,VICEz)

CALL CROSS (Dx,Dy,Dz,WCfx,0.D00,WCEfz,VTGEx,VTGEy,VTGEzZ)
CALL DOT(DET45,N2fx,N2fy,N2fz,Cx-Dx,Cy~Dy,Cz-Dz)
A33=KCI*VCI*VCI+KCII*VCII*VCII-DET3-DET45

CALCULATE SIGMA

P=A23%A23~A13*A13+ (KCI-KCII)*A33
SIGMA2=DATAN (2.D00*A13%A23/P)
SIGMA=0.5D00*SIGMA2

CALCULATE KGI AND KGII

GG=P/ (A33*DCOS (SIGMA2))
KSG=KCI+KCII-(A13%A13+A23%A23) /A33
KGI=(KSG+GG) /2.D00
KGII=(KSG-GG)/2.D00

CALCULATE EGI AND EGII

FOR

CALL ROTATE(EGIfx,EGIfy,EGIfz,ECIfx,ECIfy,ECIfz,-SIGMA,N2£x,N2fy,

. N2f2)

CALL ROTATE(EGIIfx,EGIIfy,EGIIfz,EGIfx,EGIfy,EGIfz,RITAG,

. N2fx,N2fy,N2£fz)

END
THE DETERMINATION OF PINION PRINCIPAL CURVATURES AND DIRECTIONS

SUBROUTINE PRINP1(KSP,GP,EPIfx,EPI1fy,EPI1fz,EPIIfx,EPIIfy,EPIIf2)
IMPLICIT REAL*8(A-H,K,M-2)

REAL*8 LM, TPAR(19)

COMMON/T1/TPAR

COMMON/A3/TND1, TND2,RITAG
COMMON/B1/CSPH11,SNPH11,SP,EM,LM,CSRT1,CSD1,SND1,CSLANP, SNLANP
COMMON/B2/CSPIT1,SNPIT1,MP1,MG2,QP

COMMON/B3/B2£x,B2fy,B2fz

COMMON/B5/XCR, ZCR

COMMON/C2/N2£x ,N2fy,N2f2

COMMON/D1/CSTAUP, SNTAUP

J=IDINT (TPAR (16))

R=TPAR (17)

IF(J .EQ. 1) THEN

KCI=SNLANP/ (ZCR+R*SNLANP)
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%

KCII=1.DOO/R

ELSE

RCI=-SNLANP/ (ZCR+R*SNLANP)
KCII=-1.D00/R

END IF

ECIfx=SND1*SNTAUP

ECIfy=CSTAUP

ECIfz=CSD1*SNTAUP
ECII£x=CSD1*SNLANP+SND1*CSLANP*CSTAUP
ECIIfy=-CSLANP*SNTAUP
ECII£z=-SND1*SNLANP+CSD1*CSLANP*CSTAUP
IF(J .EQ. 2)THEN

ECIIfx=-ECIIfx

ECIIfy=-ECIIfy

ECIIfz=-ECIIfz2

END IF

WP£x=-SNPIT1

WP£y=0.D00

WP£z=-CSPITI

WCEfx=-MP1*CSD1

WCEfy=0.D00

WCfz=MP1*SND1

WPCEx=WPfx-WCfx

WPCEy=WPfy-WCEy

WPCEz=WPfz-WCfz

CALL CROSS(VTPfx,VTIPfy,VIPfz,WPfx,WPfy,WPfz,B2fx,B2fy,B2fz)
CALL CROSS(VTC1£x,VTClfy,VIClfz,WCEfx,WCEfy,WCEz,B2fx,B2fy,B2f2)
CALL CROSS(VTC2fx,VTC2fy,VTC2fz,LM*SND1,EM, LM*CSD1,WCEx,WCEy,WCEzZ)
VICEx=VTCl£fx+VTC2fx

VICEy=VTClfy+VIC2fy

VICEz=VTCl£2+VTC2f2

VTPCEx=VTPfx-VTCEx

VIPCEfy=VTPfy-VTCfy

VIPC£z=VTPfz-VTCfz

CALL DOT(VCI,ECIfx,ECIfy,ECIfz,VIPCEx,VIPCfy,VTPCfz)

CALL DOT(VCII,ECIIfx,ECIIfy,ECIIfz,VTPCEx,VIPCfy,VIPCEZ)

* CALCULATE Al13,A23,A33

*

CALL DET(DETI,WPCfx,WPCfy,WPCfz,N2fx,N2fy,N2fz,ECIfx,ECIfy,ECIfz)

A13=-KCI*VCI-DETI

CALL DET(DETII,WPCfx,WPCfy,WPCfz,N2fx,N2fy,N2fz,
ECIIfx,ECIIfy,ECIIfz)

A23=-KCII*VCII-DETII

CALL DET(DET3,N2fx,N2fy,N2fz,WPCfx,WPCfy,WPCfz,
VIPCEx,VTPCfy,VTPCf2) '

CALL CROSS(Cx,Cy,Cz,WPfx,0.D00,WPfz,VTCEx,VICEfy,VTCEZ)

CALL CROSS(Dx,Dy,Dz,WCfx,0.D00,WCEz,VIPfx,VTPfy,VTP£z)
CALL DOT(DET45,N2fx,N2fy,N2fz,Cx-Dx,Cy-Dy,Cz-Dz)
A33=KCI*VCI*VCI+KCII*VCII*VCII-DET3-DET45
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* CALCULATE SIGMA

P=A23%A23-A13%A13+ (KCI-KCII)*A33
SIGMA2=DATAN (2.D00*A13*A23/P)
SIGMA=0.5D00*SIGMA2

o,

* CALCULATE KPI AND KPII

GP=P/ (A33*DCOS (SIGMA2))
KSP=KCI+KCII- (A13*A13+A23%A23)/A33
KPI=(KSP+GP)/2.D00
KPII=(KSP-GP)/2.D00
%*
* CALCULATE EPI AND EPII
CALL ROTATE(EPIfx,EPIfy,EPIfz,ECIfx,ECIfy,ECIfz,-SIGMA,N2fx,N2fy,
. N2fz)
CALL ROTATE(EPIIfx,EPIIfy,EPIIfz,EPIfx,EPIfy,EPIf2,RITAG,
. N2fx,N2fy,N2fz)
END

* FOR THE DETERMINATION OF THE ANGLE BETWEEN GEAR PRINCIPAL DIRECTIONS
AND PINION PRINCIPAL DIRECTIONS

o
by

*

SUBROUTINE SIGAN2(EGIfx,EGIfy,EGIfz,EGIIfx,EGIIfy,EGIIfz,EPIfx,
. EPIfy,EPIfz,CS2SIG,SN2SIG,SIGMPG)
IMPLICIT REAL*8 (A-H,K,M-2)
CALL DOT(CSSIG,EPI1fx,EPIfy,EPI1fz,EGIfx,EGIfy,EGIfz)
CALL DOT(SNSIG,EPIfx,EPIfy,EPI1fz,-EGIIfx,-EGIIfy,~-EGIIfz)
SIGM2=4.DOO*DATAN (SNSIG/ (1.D00+CSSIG))
SIGMPG=.5D00*SIGM2
CS2S1G=DCOS (SIGM2)
SN2SIG=DSIN (SIGM2)
END
%*

* FOR THE DETERMINATION OF CONTACT ELLIPS
*
SUBROUTINE ELLIPS(KSG,GG,KSP,GP,CS2S1G,SN2SIG,DEF,ALFAP,
. AXISL,AXISS,EPIfx,EPIfy,EPIfz)
IMPLICIT REAL*8(A-H,K,M-Z)
COMMON/A3/TND1, TND2,RITAG
COMMON/C2/N2fx,N2fy,N2fz
COMMON/E1/XBf,YBf,ZBf
D=DSQRT (GP*GP-2.D00*GP*GG*CS2SIG+GG*GG)
CS2AFP= (GP-GG*CS2SIG) /D
SN2AFP=GG*SN2SIG/D
ALFAP=DATAN (SN2AFP/ (1.DO0+CS2AFP))
A=.25D00*DABS (KSP-KSG-D)
B=.25D00*DABS (KSP-KSG+D)
IF(KSG .LT. KSP) THEN
AXISL=DSQRT (DEF/A)
AXISS=DSQRT (DEF/B)
CALL ROTATE(XBf,YBf,ZBf ,EPIfx,EPIfy,EPIfz,RITAG-ALFAP,N2fx,
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. N2fy,N2f2)

ELSE

AXISL=DSQRT (DEF/B)
AXISS=DSQRT (DEF/A)
CALL ROTATE (XBE,YBf,2Bf,EPI1fx,EPIfy,EPIf2,~ALFAP,N2fx,N2fy,
. N2f£2)

END IF
XBf=AXISL*XBf
YBf=AXISL*YBf
ZBE=AXISL*ZBf

END

*

COORDINATE TRANSFORMATION FOR F TO P

SUBROUTINE PF (B2px,B2py,B2pz,B2fx,B2fy,B2f2)
IMPLICIT REAL*8(A-H,K,M-2)
COMMON/A4/CSD2,SND2,CSPIT2,SNPIT2
COMMON/B4/CSPH2, SNPH2,CSPH21, SNPH21

%

Mt £] = [Mta) [Maf]

CALL COMBI(tl1l,t12,t13,t21,t22,t23,t31,t32,t33,t1,t2,t3,

. CSPH21,SNPHZI,O.DOO,—SNPHZI,CSPH21,0.DO0,0.DO0,0.DOO,1.D00,
. 0.D00,0.D00,0.D00,

. CSPIT2,0.D00,SNPIT2,0.D00,1.D00,0.D00,-SNPIT2,0.D00,CSPIT2,
. 0.D00,0.D00,0.D00)

CALL TRCOOR (B2wx,B2wy,B2wz,

. t11,t12,t13,t21,t22,t23,t31,t32,t33,t1,t2,t3,

. B2fx,B2fy,B2£fz)

a,

: [Mpt]=[Mpal [Mpt]
CALL COMBI(pll,pl2,pl3,p21,p22,p23,p31,p32,p33,pl,p2,p3,
. CSPITZ,O.DOO,—SNPITZ,O.DOO,1.DO0,0.DOO,SNPITZ,O.DOO,CSPITZ,
. 0.D00,0.D00,0.D00,
. CSPHZ,*SNPHZ,O.DOO,SNPHZ,CSPHZ,O.DO0,0.DO0,0.DOO,l.DOO,
. 0.D00,0.D00,0.D00)
CALL TRCOOR (B2px,B2py,B2pz,
. pll,p12,p13,p21,p22,p23,p31,p32,p33,p1,p2,p3,
. B2wx,B2wy,B2wz)
END

E

* USING EULER FORMULA TO DETERMINATION SURFACE INTERFERENCE
%
SUBROUTINE EULER (KSG,GG,KSP,GP,CS2S1G,SN2SIG, IEU)
IMPLICIT REAL*8(A-H,K,M-Z)
A=KSG-KSP
B=DSQRT ( (GG-GP*CS2S1G) **2+ (GP*SN2SIG) **2)
KR1=(A+B)/2.D00
KR2=(A-B) /2.D00
IF(KR1*KR2 .LT. 0.D00) THEN
1EU=1
ELSE
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%

Y3

%

%

IEU=0
END IF
END

DETERMINANT

SUBROUTINE DET(S,A,B,C,D,E,F,G,H,P)
IMPLICIT REAL*8 (A-H,K,M-2)
S=A*E*P+D*R*C+G*B*F-A*H*F-D*B*P-G*E*C
RETURN

END

* COORDINATE TRANSFORMATION

SUBROUTINE TRCOOR (XN, YN,ZN,R11,R12,R13,R21,R22,R23,R31,R32,R33.
T1,T2,T3,XP,YP,ZP)

IMPLICIT REAL*8 (A-H,0-Z)

XN=R11*XP+R12*YP+R13*ZP+T1
YN=R21*XP+R22*YP+R23*ZP+T2
ZN=R31*XP+R32*YP+R33*ZP+T3
RETURN

END

* MULTIPLICATION OF TWO TRANSFORMATION MATRICES

ke

* DOT

*

SUBROUTINE COMBI(C1l1,C12,C13,C21,C22,C23,C31,C32,C33,C1,C2,C3,

Al1,A12,A13,A21,A22,A23,A31,A32,A33,A1,42,A3,
B11,B12,B13,B21,B22,B23,B31,B32,B33,B1,B2,B3)

IMPLICIT REAL*8 (A-H,M,N,0-2)

C11=B31%*A13+B21%*A12+B11*A1l1l
C12=B32*A13+B22%*A12+B12%*Al1l
C13=B33*A13+B23*A12+B13*All
C21=B31%A23+B21%*A22+B11*A21
C22=B32%A23+B22%A22+B12%A21
C23=B33%A23+B23%A22+B13%A21
C31=B31*%A33+B21*A32+B11%A31
C32=B32*A33+B22*A32+B12%*A31
C33=B33*A33+B23*A32+B13*A31
C1=B3*A13+B2*A12+B1%*Al:+Al
C2=B3*A23+B2%*A22+B1*A21+A2
C3=B3*A33+B2*A32+B1*A31+A3
RETURN

END

OF TWO VECTORS

SUBROUTINE DOT(V,X1,Y1,21,X2,Y2,22)
IMPLICIT REAL*8 (A-H,0-%)
V=X1*X2+Y1*Y2+Z1%*22

RETURN

END

* CROSS OF TWO VECTORS
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SUBROUTINE CROSS(X,Y,Z,A,B,C,D,E,F)
IMPLICIT REAL*8(A-H,0-2)
X=B*F-C*E
Y=C*D-A*F
Z=A¥*E-B*D
RETURN
END
%

* ROTATION A VECTOR ABOUT ANOTHER VECTOR
%
SUBROUTINE ROTATE (XN, YN, ZN,XP,YP,ZP, THETA, UX,UY,UZ)
IMPLICIT REAL*8(A-H,0-2)
CT=DCOS (THETA)
ST=DSIN (THETA)
vVT=1.D00-CT
R11=UX*UX*VT+CT
R12=UX*UY*VT-UZ*ST
R13=UX*UZ*VT+UY*ST
R21=UX*UY*VT+UZ*ST
R22=UY*UY*VT+CT
R23=UY*UZ*VT-UX*ST
R31=UX*UZ*VT-UY*ST
R32=UY*UZ*VT+UX*ST
R33=UZ*UZ*VT+CT
CALL TRCOOR (XN, YN,ZN,R11,R12,R13,R21,R22,R23,R31,R32,R33,
. 0.D00,0.D00,0.D00,

. XP,YP,ZP)
RETURN
END
¥*
* #%¥%%  SUBROUTINE NOLIN sk

¥

SUBROUTINE NONLIN (FUNC,NSIG,NE,NC,X,Y,Y1,DELTA,A, IPVT,WORK)
IMPLICIT REAL*8 (A-H,0-2)

DIMENSION X(NE),Y(NE),Y1(NE),A(NE,NE),IPVT(NE),WORK (NE)
EXTERNAL FUNC

NDIM=NE

EPSI=1.D00/10.DO0**NSIG

CALL NONLIO(FUNC,EPSI,NE,NC,X,DELTA,NDIM,A,Y,Y1l,WORK, IPVT)
RETURN

END

%

*%%%%  SUBROUTINE NOLINO  *¥*%%%

SUBROUTINE NONLIO(FUNC,EPSI,NE,NC,X,DELTA,NDIM,A,Y,Yl,WORK, IPVT)
IMPLICIT REAL*8(A-H,0-2)
DIMENSION X(NE),Y(NE),Y1(NE),IPVT(NE),WORK(NE),A(NDIM,NE)
EXTERNAL FUNC

* NC: # OF COUNT TIMES
DO 5 I=1,NC
CALL FUNC(X,Y,NE)

* NE: # OF EQUATIONS
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%

15

25
35

55
45

65

75

105

DO 15 J=1,NE ‘

IF (DABS(Y(J)).GT.EPSI) GO TO 25
CONTINUE

GO TO 105

DO 35 J=1,NE

YL (D) =Y(])

DO 45 J=1,NE
DIFF=DABS (X (J)) *DELTA

IF (DABS(X(J)).LT.1.D-12) DIFF=DELTA
XMAM=X (J)

X (J)=X(J) -DIFF

CALL FUNC(X,Y,NE)

X (J) =XMAM

DO 55 K=1,NE
AK,D=(Y1(K)-Y(K)) /DIFF
CONTINUE

CONTINUE

DO 65 J=1,NE

Y(J3)=-Y1(J)

CALL DECOMP (NDIM,NE,A,COND,IPVT,WORK)
CALL SOLVE (NDIM,NE,A,Y,IPVT)

DO 75 J=1,NE
X()=X(D+Y ()
CONTINUE
CONTINUE
RETURN

END

dedededede SUBROUTINE DECOMP Jededk e
SUBROUTINE DECOMP (NDIM,N,A,COND, IPVT,WORK)

IMPLICIT REAL*8 (A-H,0-Z)
DIMENSION A(NDIM,N),WORK(N),IPVT(N)

DECOMPOSES A REAL MATRIX BY GAUSSIAN ELIMINATION,
AND ESTIMATES THE CONDITION OF THE MATRIX.

-COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS-, BY G. E. FORSYTHE,

M. A. MALCOLM, AND C. B. MOLER (PRENTICE-HALL, 1977)

USE SUBROUTINE SOLVE TO COMPUTE SOLUTIONS TO LINEAR SYSTEM.

INPUT..
NDIM = DECLARED ROW DIMENSION OF THE ARRAY CONTAINING A
N = ORDER OF THE MATRIX
A = MATRIX TO BE TRIANGULARIZED

OUTPUT..

A CONTAINS AN UPPER TRIANGULAR MATRIX U AND A PREMUTED
VERSION OF A LOWER TRIANGULAR MATRIX I-L SO THAT
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* (PERMUTATION MATRIX) *A=L*U

%

%* COND = AN ESTIMATE OF THE CONDITION OF A,

* FOR THE LINEAR SYSTEM A*X = B , CHANGES IN A AND B
* MAY CAUSE CHANGES COND TIMES AS LARGE IN X.

* IF COND+1.0 .EQ. COND , A IS SINGULAR TO WORKING

* PRECISION. COND IS SET TO 1.0D+32 IF EXACT

* SINGULARITY IS DETECTED.

%

* IPVT = THE PIVOT VECTOR

* IPVT(K) = THE INDEX OF THE K-TH PIVOT ROW
* IPVT(N) = (-1)**(NUMBER OF INTERCHANGES)

*  WORK SPACE.. THE VECTOR WORK MUST BE DECLARED AND INCLUDED

% IN THE CALL. ITS INPUT CONTENTS ARE IGNORED.
* ITS OUTPUT CONTENTS ARE USUALLY UNIMPORTANT.
%*
* THE DETERMINANT OF A CAN BE OBTAINED ON OUTPUT BY
* DET(A) = IPVT(N) * A(1,1) * A(2,2) * ... * A(N,N)
[ 4
IPVT(N) =1
IF (N.EQ.1) GO TO 150
NM1=N-1
* COMPUTE THE 1-NORM OF A .
ANORM=0.D0
Do 20 J=1,N
T=0.D0
DO 10 I=1,N

10  T=T+DABS(A(I,J))
IF (T.GT.ANORM) ANORM=T
20 CONTINUE

* DO GAUSSIAN ELIMINATION WITH PARTIAL
* PIVOTING.
DO 70 K=1,NM1
KP1=K+1
* FIND THE PIVOT.
M=K

DO 30 I=KP1,N
IF (DABS(A(I,K)).GT.DABS(A(M,K))) M=I
30 CONTINUE

IPVT (K) =M
IF (M.NE.K) IPVT(N)=-IPVT(N)
T=A(M,K)
AM,K)=A(K,K)
A(K,K)=T
* SKIP THE ELIMINATION STEP IF PIVOT IS ZERO.

IF (T.EQ.0.DO) GO TO 70

* COMPUTE THE MULTIPLIERS.
DO 40 I=KP1,N
40 A(I,R)=-A(I,K)/T
* INTERCHANGE AND ELIMINATE BY COLUMNS.
DO 60 J=KP1,N
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¥ % % X ¥ ¥

b3

T=AM, )
AM,0)=A(K,T)
A, =T
IF (T.EQ.0.D0) GO TO 60
DO 50 I=KP1,N
50 AT, D=A0,D+A(I,K)*T
60 CONTINUE
70 CONTINUE

COND = (1-NORM OF A)* (AN ESTIMATE OF THE 1-NORM OF A-INVERSE)

THE ESTIMATE IS OBTAINED BY ONE STEP OF INVERSE ITERATION FOR THE
SMALL SINGULAR VECTOR. THIS INVOLVES SOLVING TWO SYSTEMS

OF EQUATIONS, (A~-TRANSPOSE)*Y = E AND A*Z = Y WHERE E

IS A VECTOR OF +1 OR -1 COMPONENTS CHOSEN TO CAUSS GROWTH IN Y.
ESTIMATE = (1-NORM OF Z)/(1-NORM OF Y)

SOLVE (A-TRANSPOSE)*Y = E .
DO 100 K=1,N
T=0.DO0
IF (K.EQ.1) GO TO 90
KM1=K~1
DO 80 I=1,KMI
80 T=T+A(I,K)*WORK(I)

90 EK=1.D0O
IF (T.LT.0.D0) EK=-1.D0

IF (A(K,K).EQ.0.DO) GO TO 160
All=A(1,1)
WORK (K) =- (EK+T) /A(1,1)
100 CONTINUE
DO 120 KB=1,NM1
K=N-KB
T=0.D0
KP1=K+1
DO 110 I=KP1,N
110  T=T+A(I,K)*WORK (K)
WORK (K) =T
M=IPVT(K)
IF (M.EQ.K) GO TO 120
T=WORK (M)
WORK (M) =WORK (K)
WORK (K) =T
120 CONTINUE

YNORM=0.DO0
DO 130 Ii=1,N
130 YNORM=YNORM+DABS (WORK (I))

SOLVE A*Z = Y
CALL SOLVE (NDIM,N,A,WORK,TPVT)
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ZNORM=0.D0
DO 140 I=1,N
140 ZNORM=ZNORM+DABS (WORK (1))

ESTIMATE THE CONDITION.
COND=ANORM*ZNORM/YNORM
IF (COND.LT.1.D0) COND=1.DO
RETURN
1-BY-1 CASE..
150 COND=1.DO
IF (A(1,1).NE.0.DO) RETURN

EXACT SINGULARITY
160 COND=1.0D32
RETURN
END
SUBROUTINE SOLVE (NDIM,N,A,B,IPVT)

IMPLICIT REAL*8(A-H,0-2)
DIMENSION A(NDIM,N),B(N),IPVT(N)

SOLVES A LINEAR SYSTEM, A*X =B
DO NOT SOLVE THE SYSTEM IF DECOMP HAS DETECTED SINGULARITY.

-COMPUTER METHODS FOR MATHEMATICAL COMPUTATIONS-, BY G. E. FORSYTHE,

M. A. MALCOLM, AND C. B. MOLER (PRENTICE-HALL, 1977)

INPUT..
NDIM = DECLARED ROW DIMENSION OF ARRAY CONTAINING A
N = ORDER OF MATRIX
A = TRIANGULARIZED MATRIX OBTAINED FROM SUBROUTINE DECOMP
B = RIGHT HAND SIDE VECTOR

IPVT = PIVOT VECTOR OBTAINED FROM DECOMP
OUTPUT..
B = SOLUTION VECTOR, X

DO THE FORWARD ELIMINATION.
IF (N.EQ.1) GO TO 50
NM1=N-1
DO 20 K=1,NM1
KP1=K+1
M=IPVT (K)
T=B (M)
B (M) =B (K)
B(K)=T
DO 10 I=KP1,N
10 B(I)=B(I)+A(I,K)*T
20 CONTINUE
NOW DO THE BACK SUBSTITUTION.
DO 40 KB=1,NMl
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KM1=N-KB
K=KM1+1
B (K) =B (K) /A(K,K)
T=-B (K)
DO 30 I=1,KMl
30 B(I)=B(I)+A(I,K)*T
40 CONTINUE
50 B(1)=B(1)/a(1,1)
RETURN
END
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